

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

Analysis framework status report

Antonio D'Avanzo, DBL fully-hadronic anomaly detection meeting, 31/05/2024

The analysis

- Anomaly Detection in fully hadronic events with message passing based Graph Neural Netwoks (GNNs).
- Graphs representing the final states jets, the 2 pT leading jets per event, built from <u>transformed</u> constituents.
- > Graph features contain **[pT frac**, η and ϕ] of the constituents as node features, nodes connected if $\Delta R < 0.2$ with $1/\Delta R$ as the edge feature (dataset with $\Delta R < 0.1$ also available).

- > **Final goal:** Run 3 fully hadronic search
 - Completely model agnostic, 2 large-R jets per event
 - Signal region based on Anomaly Score cut.

toy model

R&D LHC Olympics dataset

- ► $Z' \rightarrow XY \rightarrow qqqq$ events
- M_{W'} = 3.5TeV, m_X = 500GeV, m_Y = 100GeV
- reconstructed with anti- k_T with R = 1.0

Nutple framework

Production of ntuples from our run 3 LLJ1 DxAOD based on EasyJet framework.

> News:

- Produced ntuple for data22, ~100k events.
- Increased trigger list with new largeR-jet items, for both 2022 and 2023.
 - \succ 2 items give problems with MC, can be commentated.

trigger	list 2022
---------	-----------

trigger list 2023

- Trigger item: HLT_j360_a10t_lcw_jes_L1J100
- > Sigmoid = p2/(1+TMath::Exp(-(x p1)/p0))

- Trigger item: HLT_j420_a10sd_cssk_pf_jes_ftf_preselj225_L1J100
- > Sigmoid = p2/(1+TMath::Exp(-(x p1)/p0))

- Trigger item: HLT_j460_a10r_L1J100
- > Sigmoid = p2/(1+TMath::Exp(-(x p1)/p0))

22423.4

	=	424553	+/-	391.524
	= 0	.981706	+/-	0.00166781
off at 0.97	efficiency:	523602		

22383.8 245.315 +/-432760 +/-358.861 0.985058 +/-0.00142138 Found cut off at 0.98 efficiency: 550647

267.65

+/-

- Trigger item: HLT_j460_a10t_lcw_jes_L1J100
- > Sigmoid = p2/(1+TMath::Exp(-(x p1)/p0))

- Trigger item: HLT_j460_a10_lcw_subjes_L1J100
- > Sigmoid = p2/(1+TMath::Exp(-(x p1)/p0))

- Trigger item: HLT_j460_a10sd_cssk_pf_jes_ftf_preselj225_L1J100
- > Sigmoid = p2/(1+TMath::Exp(-(x p1)/p0))

- Trigger item: HLT_j360_a10t_lcw_jes_L1J100
- > Sigmoid = p2/(1+TMath::Exp(-(x p1)/p0))

- Trigger item: HLT_j420_a10sd_cssk_pf_jes_ftf_preselj225_L1J100
- > Sigmoid = p2/(1+TMath::Exp(-(x p1)/p0))

- Trigger item: HLT_j460_a10t_lcw_jes_L1J100
- > Sigmoid = p2/(1+TMath::Exp(-(x p1)/p0))

- Trigger item: HLT_j460_a10sd_cssk_pf_jes_ftf_preselj225_L1J100
- > Sigmoid = p2/(1+TMath::Exp(-(x p1)/p0))

BACK-UP

trigger study

- Tag and probe method: the efficiency is computed on the subleading jet pT by requesting that the leading jet is matched with the trigger item and then checking the subleading matching
- > The efficiency curve is fitted with sigmoid function: L/(1+TMath::Exp(-(x a)/b))

New format definition

- o Format on gitlab
- Starting from DAOD_PHYS
- Added constituents for UFO jets

◦ Added event skimming →At least one large-R with $|\eta| < 2.8, p_T > 150 \text{ GeV},$ m > 30 GeV

 Added trigger skimming (new Run-3 Large-R jet trigger, still ongoing)

Francesco's slides

```
### I JEL ODJECL SKIMMING
sel_1jet_template = "((count (abs({0}eta) < 2.8 && {0}pt > 150*GeV && {0}m > 30*GeV) >= 1))"
topology_selection_1jet = "({})".format(
   " || ".join([sel_1jet_template.format(j) for j in largeRJetsForSkimming])
     ### trigger skimming
     TriggersList = [
         ### baseline run-2
         'HLT_j360_a10_lcw_sub_L1J100',
         'HLT_j420_a10_lcw_L1J100',
         'HLT_j460_a10t_lcw_jes_L1J100',
         ### new run-3
         'HLT_j460_a10sd_cssk_pf_jes_ftf_preselj225_L1J100',
         'HLT_j460_a10_lcw_subjes_L1J100',
         'HLT_j460_a10r_L1J100',
         ### new run-3 mass cut
         'HLT_j420_35smcINF_a10sd_cssk_pf_jes_ftf_preselj225_L1J100',
         'HLT_j420_35smcINF_a10t_lcw_jes_L1J100',
```

ntuple maker

- Production of ntuples from our run 3 LLJ1 DxAOD based on EasyJet framework.
- > Achievements:
 - Disabling b-tagging on large-R jets;
 - Customization of list of applied triggers;
 - Computation of new variables from base ones included in DxAOD;
 - > Addition of constituents variables to the final ntuple, also systematic aware.
- Running on LLJ1 MC background (JZ8 splice) with 20k events.
 - Selections applied on jets pT > 200 GeV and |eta| < 2, 2 jets selected per event.</p>
 - About ~70% of size of ntuple consists of constituents info.

More plots: leading jet

×10³

5000 4000

0^L

-3

-2

More plots: subleading jet

INTRODUCTION

\succ The aim:

- Graph Anomaly Detection algorithm for the discovery of diboson resonances decaying in fully hadronic final states with the ATLAS detector in run-III.
 - Anomaly Detection: model-independent approach, sensitive to more than one signal hypothesis as it only detects «anomalies» w.r.t. background.

> The strategy:

- Reconstructed jets at each event are represented as graphs.
- This dataset of graphs is then used to train a Graph Neural Network (GNN) model in order to classify anomalous signal vs background by means of an anomaly score.

GRAPH ANOMALY DETECTION IN HEP

- Graph: Structured objects composed of entities used to describe and analyze relations and interactions (edges) between such entities (nodes).
 - Nodes and edges typically contain features specific to each element and each pair.

Application of machine learning to build an anomaly detection algorithm on graphs

- Graph Anomaly Detection (GAD) applied to many research fields (social networks, e-commerce, medicine, and telecommunications) where graph representation is more natural than classic data sequencing.
 - Many successful results obtained.
 - Yet to be applied in High Energy Physics analysis.

GRAPH NEURAL NETWORKS

- Graph Neural Networks (GNNs) are ML architectures built specifically to make predictions on graphs, exploiting their relational nature.
 - Based on learnt vector representation (embedding) of each node of the input graphs.
- ➤ The embeddings are updated at each layer by aggregating the information passed between the target node and the nodes from its closest neighbourhood → <u>message passing</u>

ANALYSIS CHANNEL OF INTEREST

- Events signature
 - Background: QCD, to be estimated with data-driven approach (typical of unsupervised tasks).
 - Signal: $Y \rightarrow XX' \rightarrow qqqq$, where X or X' can be either a SM or BSM boson.
- Aiming at the kinematic region where X and X' are produced with significant Lorentz boost due to large mass difference between parent and daughters particles.
 - Y reconstructed with two large-R jets (fatjets) of radius ΔR , denoted as merged regime.

CURRENT BENCHMARK DATASET

- Benchmark application with <u>LHC Olympics 2020</u> R&D dataset.
 - MC generated dataset built specifically for anomaly detection.
 - I.IM total events, IM background and 100k anomalous signal.
- Events signature
 - Background: QCD di-jet.
 - Signal: $Z' \rightarrow XY \rightarrow qqqq$, particles reconstructed as fatjets with large radius R = 1.

Particle	Mass [GeV]
Z'	3500
×	500
Y	100

GRAPH REPRESENTATION OF JETS

Current definition of a jet

- o <u>Entites:</u>
 - □ Nodes \rightarrow topoclusters contained in each jet reconstructed with anti-k_t algorithm
 - □ Edges \rightarrow Created only if $\Delta R < 0.2$ (previously 0.4) between two topoclusters, no self-loops
- Features:
 - **D** Nodes \rightarrow pT fraction, η , ϕ .
 - $\Box \quad \mathsf{Edges} \to \mathsf{I}/(\Delta \mathsf{R} + \varepsilon)$
- > Transfomation applied for data augmentation and model robustness reasons (arXiv:1903.02032, arXiv:2105.09274).
 - Rescaling of the four momenta ($m_0 = 0.25 \text{ GeV}$) \rightarrow boost so that the energy is $E_0 = 1 \text{ GeV} \rightarrow$ further rotation of constituents along jet axis.

Current architecture in a nutshell

- > Main work on a GNN only model, so we need a suitable optimization task.
- A popular anomaly detection loss function, the Mean Squared Error (MSE), could be used, but an autoencoder (AE) must be connected to compare each graph representation with the AE output.

Previous state of the

DeepSVDD model, GIN model with MLP layers applied before and after.

$$L = \lambda_L \frac{1}{N} \sum_{i}^{N} \|GIN(x_i; W_{GIN}) - c_{GIN}\|^2 + \lambda_G \frac{1}{N} \sum_{i}^{N} \|MLP(X_i; W_{MLP}) - c_{MLP}\|^2 + weight \ decay$$

100k events

10k events

EGATConv

EGAT extends on GAT model by implementing edge features in a different way and by allowing updating of the edge weights tensor between each layer of GNN (edge embedding).

GATConv

class dgl.nn.pytorch.conv.GATConv(in_feats, out_feats, num_heads, feat_drop=0.0, attn_drop=0.0, negative_slope=0.2, residual=False, activation=None, allow_zero_in_degree=False, bias=True) [source]

Bases: torch.nn.modules.module.Module

Graph attention layer from Graph Attention Network

$$h_i^{(l+1)} = \sum_{j \in \mathcal{N}(i)} \alpha_{i,j} W^{(l)} h_j^{(l)}$$

where α_{ij} is the attention score bewteen node *i* and node *j*:

$$\alpha_{ij}^{l} = \text{softmax}_{i}(e_{ij}^{l})$$
$$e_{ij}^{l} = \text{LeakyReLU}\left(\vec{a}^{T}[Wh_{i}||Wh_{j}]\right)$$

Returns:

- torch.Tensor The output feature of shape (N, *, H, D_{out}) where H is the number of heads, and D_{out} is size of output feature.
- torch.Tensor, optional The attention values of shape (E, *, H, 1), where E is the number of edges. This is returned only when get_attention is True.

EGATConv

class dgl.nn.pytorch.conv.EGATConv(in_node_feats, in_edge_feats, out_node_feats, out_edge_feats, num_heads, bias=True) [source]

Bases: torch.nn.modules.module.Module

Graph attention layer that handles edge features from Rossmann-Toolbox (see supplementary data)

The difference lies in how unnormalized attention scores e_{ij} are obtained:

 $e_{ij} = \vec{F}(f'_{ij})$ $f'_{ij} = \text{LeakyReLU}\left(A[h_i || f_{ij} || h_j]\right)$

where f_{ij}^{\prime} are edge features, A is weight matrix and

Returns:

• *pair of torch.Tensor* – node output features followed by edge output features The node output feature of shape (N, H, D_{out}) The edge output feature of shape (F, H, F_{out}) where:

H is the number of heads, D_{out} is size of output node feature, F_{out} is size of output edge feature.

- *torch.Tensor*, *optional* The attention values of shape (*E*, *H*, 1). This is returned only when :attr: *get_attention* is **True**.
- > Selfloop is required because of how the node representation is updated.

GLOCAIK

- > Article: <u>Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation</u>.
- Employs a variation of Knowledge Distillation (KD) technique, where the initial goal is to train a simple model that syntetize the knowledge of a large model while maintaining similar accuracy as the large model.
 - Random Knowledge Distillation for joint distillation at node-level and graph-level.
- Implements two GNNs:
 - Random Target Network, not-trained and randomly initialized, used as reference to learn the normal patters of our dataset.
 - > Predictor Network, trained by comparing its node and graph representations (h_G , h_i) with the ones from the above network (\hat{h}_G , \hat{h}_i) through a KD function.

GLocalKD paper

model

> KD function in L chosen as error between the two networks output.

> Anomaly Score computed for test dataset:

$$f(G; \hat{\Theta}, \Theta^*) = \left\| \mathbf{h}_G - \hat{\mathbf{h}}_G \right\|^2 + \frac{1}{|G|} \sum_{v_i \in \mathcal{V}_G} \| \mathbf{h}_i - \hat{\mathbf{h}}_i \|^2$$

G \rightarrow number of nodes for graph *G*

- > Things to note:
 - > Node degree used as node feature for training.
 - > Max pooling to obtain graph representation.

OCGTL

- Article: <u>Raising the Bar in Graph-level Anomaly Detection</u>.
- > Combines one-class classification of OCGIN and neural transformation lerning.
- One reference GNN and K additional GNNs are trained together in order to detect anomalies.
 Each representation obtained now is used to learn the optimal hypersphere radius of non-anomalies region.
- Advantage w.r.t. DeepSVDD objective:
 - > No hypersphere collapse, center can be treated as learnable parameter.
 - > More robust training.
 - > No performance flip.

Transformation learning contribute

→ center of the hypersphere, sim chosen as cosine similarity → $z^T z' / ||z|| ||z'||$

 $\succ \tau$ temperature parameter, final loss on training dataset at each epoch computed as $\mathbb{E}_{G}[\mathcal{L}_{OCGTL}(G)]$

DEEP SUPPORT VECTOR DATA DESCRIPTION (DEEP SVDD)

- Deep SVDD works by minimizing an objective in order to learn and optimize the radius R of a hypersphere in the output space F which only cointains outputs from non-anomalous data features X.
 - > Output space defined by the output of the considered ML architecture (NN, MLP, GNN, ecc.)
 - > Output from anomalies falls outside of the hypersphere and is identified by its distance from the center c.

GRAPH ISOMORPHISM NETWORK (GIN)

> <u>GIN</u> formulation employs both message passing and MLPs, making it the most expressive GNN:

$$MLP_{\Phi}\left((1+\epsilon) \cdot MLP_{f}(c^{(k)}(v))) + \sum_{u \in N(v)} MLP_{f}(c^{(k)}(u))\right)$$

learnable parameter
$$c^{(k)}(u) \leftrightarrow h_{j}^{(l)}$$

Embedding of node u al layer (k)

This expression can be rewritten in a more general way, also allowing for edge weights to be considered in the graph convolution.

$$h_i^{(l+1)} = f_{\Theta} \left((1+\epsilon) h_i^l + \text{aggregate} \left(\left\{ e_{ji}^{k} h_j^l, j \in \mathcal{N}(i) \right\} \right) \right)$$

> Aggregate can be any permutation invariant function (Sum, Mean, Max ecc.)