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The analysis
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Ø Anomaly Detection in fully hadronic events with message 
passing based Graph Neural Netwoks (GNNs).

Ø Graphs representing the final states jets, the 2 pT leading jets 
per event, built from transformed constituents.

Ø Graph features contain [pT frac, 𝜂 and 𝜙] of the constituents 
as node features, nodes connected if 𝛥R < 0.2  with 1/𝛥R as 
the edge feature (dataset with 𝛥R < 0.1 also available). 

Ø Final goal: Run 3 fully hadronic search
Ø Completely model agnostic, 2 large-R jets per event
Ø Signal region based on Anomaly Score cut.

https://arxiv.org/pdf/1903.02032.pdf


Ø Production of ntuples from our run 3 LLJ1 DxAOD based on EasyJet framework.

Ø News:
Ø Produced ntuple for data22, ~100k events.
Ø Increased trigger list with new largeR-jet items, for both 2022 and 2023.

Ø 2 items give problems with MC, can be commentated.

Nutple framework
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Unprescaled run 3 triggers twiki here

trigger list 2022 trigger list 2023

https://twiki.cern.ch/twiki/bin/viewauth/Atlas/LowestUnprescaled


Ø Trigger item: HLT_j360_a10t_lcw_jes_L1J100

Ø Sigmoid = p2/(1+TMath::Exp(-(x – p1)/p0))  

trigger study data
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data23

data22
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Ø Trigger item: HLT_j420_a10sd_cssk_pf_jes_ftf_preselj225_L1J100

Ø Sigmoid = p2/(1+TMath::Exp(-(x – p1)/p0))  

trigger study data
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Ø Trigger item: HLT_j460_a10r_L1J100

Ø Sigmoid = p2/(1+TMath::Exp(-(x – p1)/p0))  

trigger study data
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Ø Trigger item: HLT_j460_a10t_lcw_jes_L1J100

Ø Sigmoid = p2/(1+TMath::Exp(-(x – p1)/p0))  

trigger study data
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Ø Trigger item: HLT_j460_a10_lcw_subjes_L1J100

Ø Sigmoid = p2/(1+TMath::Exp(-(x – p1)/p0))  

trigger study data
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Ø Trigger item: HLT_j460_a10sd_cssk_pf_jes_ftf_preselj225_L1J100

Ø Sigmoid = p2/(1+TMath::Exp(-(x – p1)/p0))  

trigger study data
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Ø Trigger item: HLT_j360_a10t_lcw_jes_L1J100

Ø Sigmoid = p2/(1+TMath::Exp(-(x – p1)/p0))  

trigger study MC
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Ø Trigger item: HLT_j420_a10sd_cssk_pf_jes_ftf_preselj225_L1J100

Ø Sigmoid = p2/(1+TMath::Exp(-(x – p1)/p0))  

trigger study MC
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Ø Trigger item: HLT_j460_a10t_lcw_jes_L1J100

Ø Sigmoid = p2/(1+TMath::Exp(-(x – p1)/p0))  

trigger study MC
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Ø Trigger item: HLT_j460_a10sd_cssk_pf_jes_ftf_preselj225_L1J100

Ø Sigmoid = p2/(1+TMath::Exp(-(x – p1)/p0))  

trigger study MC
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BACK-UP



Ø Tag and probe method: the efficiency is computed on the subleading jet pT by requesting that the leading jet is 
matched with the trigger item and then checking the subleading matching

Ø The efficiency curve is fitted with sigmoid function: L/(1+TMath::Exp(-(x - a)/b))

trigger study
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efficiency = !"#$%&'_%)*+%',#-./"$_trigger_item == 1 && subleading_isTrigMatched_trigger_item == 1
!"#$%&'_%)*+%',#-./"$_trigger_item == 1

Data Z+jets

b 8737.24 ± 119.947 9860.62 ± 18.0499

a 430779 ± 196.361 434942 ± 29.8561

L 0.993001 ± 0.000923239 0.985701 ± 0.000179415



BACK-UP

Francesco’s slides

https://indico.cern.ch/event/1345677/contributions/5678948/attachments/2757960/4802268/DAODFormat_request.pdf


Ø Production of ntuples from our run 3 LLJ1 DxAOD based on EasyJet framework.

Ø Achievements:
Ø Disabling b-tagging on large-R jets;
Ø Customization of list of applied triggers;
Ø Computation of new variables from base ones included in DxAOD;
Ø Addition of constituents variables to the final ntuple, also systematic aware.

Ø Running on LLJ1 MC background (JZ8 splice) with 20k events.
Ø Selections applied on jets pT > 200 GeV and |eta| < 2, 2 jets selected per event.
Ø About ~70% of size of ntuple consists of constituents info.

ntuple maker

pT of constituents 
for leading jet

eta of constituents 
for leading jet

# of constituents 
for leading jet



More plots: leading jet



More plots: subleading jet

















Ø DeepSVDD model, GIN model with MLP layers applied before and after. 

Previous state of the 
art
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Ø EGAT extends on GAT model by implementing edge features in a different way and by allowing updating of the
edge weights tensor between each layer of GNN (edge embedding).

Ø Selfloop is required because of how the node representation is updated.

EGATConv
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Loss function for unsupervised learning:

GLocalK
D

Ø Article: Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation.

Ø Employs a variation of Knowledge Distillation (KD) technique, where the initial goal is to train a simple model 
that syntetize the knowledge of a large model while maintaining similar accuracy as the large model.
Ø Random Knowledge Distillation for joint distillation at node-level and graph-level.

Ø Implements two GNNs:
Ø Random Target Network, not-trained and randomly initialized, used as reference to learn the normal 

patters of our dataset.
Ø Predictor Network, trained by comparing its node and graph representations (h!, h") with the ones from 

the above network (%h!, &h") through a KD function.

https://arxiv.org/abs/2112.10063


GLocalKD paper 
model

Ø KD function in L chosen as error between the two networks output.

Ø Anomaly Score computed for test dataset:

Ø Things to note:
Ø Node degree used as node feature for training.
Ø Max pooling to obtain graph representation.

𝜆 = 1

G → number of nodes for graph G



OCGTL
Ø Article: Raising the Bar in Graph-level Anomaly Detection.

Ø Combines one-class classification of OCGIN and neural transformation lerning.

Ø One reference GNN and K additional GNNs are trained together in order to detect anomalies.
Ø Each representation obtained now is used to learn the optimal hypersphere radius of non-

anomalies region.

Ø Advantage w.r.t. DeepSVDD objective:
Ø No hypersphere collapse, center can be treated as learnable parameter.
Ø More robust training.
Ø No performance flip.

https://arxiv.org/abs/2205.13845


OCGTL loss 
function

Ø Consists of two terms:

Ø 𝜃 → center of the hypersphere, sim chosen as cosine similarity → 

Ø 𝜏 temperature parameter, final loss on training dataset at each epoch computed as                        

One class contribute

Transformation learning contribute



DEEP SUPPORT VECTOR DATA DESCRIPTION (DEEP SVDD)

Ø Deep SVDD works by minimizing an objective in order to learn and optimize the radius R of a hypersphere in the 
output space F which only cointains outputs from non-anomalous data features X.
Ø Output space defined by the output of the considered ML architecture (NN, MLP, GNN, ecc.)
Ø Output from anomalies falls outside of the hypersphere and is identified by its distance from the center c. 

Anomaly Score

objective



GRAPH ISOMORPHISM NETWORK (GIN)

Ø GIN formulation employs both message passing and MLPs, making it the most expressive GNN:

Ø This expression can be rewritten in a more general way, also allowing for edge weights to be considered in the 
graph convolution.

Ø Aggregate can be any permutation invariant function (Sum, Mean, Max ecc.)

Embedding of node u al layer (k)learnable parameter

http://web.stanford.edu/class/cs224w/slides/09-theory.pdf

