
Simulation Meeting - 03/06/2024

digitizationpp: status
S. Piacentini, G. Dho

1

The code is complete

2

• The code is complete and available new repository: CYGNUS-RD/digitizationpp

• The current version of the code is tagged as “v0.1” and it’s the almost exact
transcription of the digitization code (https://github.com/flaminiadigiamba/
digitization), with the addition of the new map algorithm in case of long tracks.

https://github.com/CYGNUS-RD/digitizationpp
https://github.com/flaminiadigiamba/digitization
https://github.com/flaminiadigiamba/digitization
https://github.com/flaminiadigiamba/digitization
https://github.com/flaminiadigiamba/digitization

Traditional “voxelization” algorithm

3

• Geant4 hits GEM1 gain GEM2 gain diffusion smearing

➡ After the smearing we have (x, y, z) position of each electron after GEM2

• Diffusion smearing Voxelization Voxel-by-Voxel GEM3 gain (with saturation)

➡ Voxelization is the most expensive part:

➡ CPU consumption (unavoidable)

➡ memory usage: 1 integer per voxel, typical voxel sizes are 

 0.150 mm 0.150 mm 0.1 mm if track is too long, voxels divided in 
 sub-regions, at the price of CPU usage

→ → →

→ →

× × ←

z

x

y

Voxels sub-regions

In other words voxels are a 3D
histogram!

When track is long enough,
more than 99% of the bins (aka

voxels) are equal to 0!

The new map algorithm

4

z

x

y

Voxels sub-regions

In other words voxels are a 3D
histogram!

When track is long enough,
more than 99% of the bins (aka

voxels) are equal to 0!

• Voxels: 3D tensor with almost all bins equal to 0. This is what is defined as a sparse
tensor.

• A lot of literature about sparse structures:

• Usually implemented as a map where the key is the coordinate and the value is the
bin content

• Most appropriate structure if you have to do other operations on the tensor (e.g.
tensor-by-tensor multiplication etc.) is the boost::unordered_map

The new map algorithm

5

z

x

y

Voxels sub-regions

In other words voxels are a 3D
histogram!

When track is long enough,
more than 99% of the bins (aka

voxels) are equal to 0!

• Voxels: 3D tensor with almost all bins equal to 0. This is what is defined as a sparse
tensor.

• A lot of literature about sparse structures:

• Usually implemented as a map where the key is the coordinate and the value is the
bin content

• Most appropriate structure if you have to do other operations on the tensor (e.g.
tensor-by-tensor multiplication etc.) is the boost::unordered_map

Sparse-ness of traditional voxel tensor

6

• For the tests I used https://github.com/CYGNUS-RD/digitizationpp/blob/main/
input/LIME_CADshield_6Cu_210Bi_part0.root that contains 9 long and short
tracks.

• Sparse-ness levels for these tracks:

https://github.com/CYGNUS-RD/digitizationpp/blob/main/input/LIME_CADshield_6Cu_210Bi_part0.root
https://github.com/CYGNUS-RD/digitizationpp/blob/main/input/LIME_CADshield_6Cu_210Bi_part0.root
https://github.com/CYGNUS-RD/digitizationpp/blob/main/input/LIME_CADshield_6Cu_210Bi_part0.root

Sparse-ness of traditional voxel tensor

7

• For the tests I used https://github.com/CYGNUS-RD/digitizationpp/blob/main/
input/LIME_CADshield_6Cu_210Bi_part0.root that contains 9 long and short
tracks.

• Sparse-ness levels for these tracks:

Longer tracks are, 
as expected, sparser!

https://github.com/CYGNUS-RD/digitizationpp/blob/main/input/LIME_CADshield_6Cu_210Bi_part0.root
https://github.com/CYGNUS-RD/digitizationpp/blob/main/input/LIME_CADshield_6Cu_210Bi_part0.root
https://github.com/CYGNUS-RD/digitizationpp/blob/main/input/LIME_CADshield_6Cu_210Bi_part0.root

The new map algorithm

8

• Usually implemented as a map where the key is the coordinate and the value is the
bin content

z

x

y key value

index()⃗bin0

index()⃗bin1

index()⃗bin2

index()⃗bin3

content()⃗bin0

content()⃗bin1

content()⃗bin2

content()⃗bin3

• There’s a gain in performance (CPU and memory) only if the track is sufficiently long

Optimization 
still to be found:

digitizationpp: performance

9

• For the tests I used https://github.com/CYGNUS-RD/digitizationpp/blob/main/
input/LIME_CADshield_6Cu_210Bi_part0.root that contains 9 long and short
tracks.

• Total time to digitize 9 tracks:

➡ Traditional voxels, Python: 178 s

➡ Traditional voxels, C++: 25 s

➡ New map algorithm on long tracks, C++: 19 s

C++
Python

https://github.com/CYGNUS-RD/digitizationpp/blob/main/input/LIME_CADshield_6Cu_210Bi_part0.root
https://github.com/CYGNUS-RD/digitizationpp/blob/main/input/LIME_CADshield_6Cu_210Bi_part0.root
https://github.com/CYGNUS-RD/digitizationpp/blob/main/input/LIME_CADshield_6Cu_210Bi_part0.root

Conclusions

10

• The code is completed and it’s ready to be
intensively tested on simulations, also of NR tracks

• There’s still room for optimization, any volunteer is
welcome

• When you’ll use it, please, check the configuration
file values for diffusion, saturation, etc. etc.

Fully digitized track

