Mixture of the gas evolution in the RPCs and their performance

R.Cardarelli

INFN Roma Tor Vergata and Geneva University

Scarica nei gas nobili

Dosimetri-camera proporzionali

Per $E_1=E_2$ condizione di Meek $d^*\alpha>20$ Transizione valanga \rightarrow steamer \rightarrow arco

Scarica nei gas Nobili con $d^*\alpha > 20$

 La propagazione della scarica e dovuta alla ricombinazione elettrone ione con emissione di un fotone ultravioletto quando E2 ≥ E1 condizione di Meek si Hanno due casi: elettrodi isolanti(camera a flash, RPC), elettrodi metallici(Camere a scintilla, camera a streamer limitato)

Camere con elettrodo isolante e metallico

Miscela gas Nobile + idrocarburo

 Gli idrocarburi (Butano, Isobutano, Alcol,.....) hanno la proprietà di Assorbire I fotoni ultravioletti e riemetterli nell'infrarosso attraverso i moti rotazionali e vibrazionali della molecola dell'idrocarburo quindi bloccano la propagazione della scarica

Miscela Argon-Butano

Gli RPC

 La combinazione della localizzazione dello streamer attraverso gli idrocarburi e la limitazione della corrente attraverso pa resistività dell'elettrodo semi isolante permette di realizzare un rivelatore di particelle a campo elettrico uniforme, per il suo corretto funzionamento occorre curare la planarità delle superfici(olio di Lino)

Gap utile con N₀= 1 non considerando le fluttuazioni di Landau

Per $E_1 > E_2$ N = N₀ EXP(**d1*****\alpha1**) con d1* α 1>20

Efficienza di streamer = Probabilità di fare una ionizzazione in Gu=G-dn

Per E₁>E₂ N= N₀ EXP($d^*\alpha$)

Per E₁=E₂ condizione di Meek d* α >20 Transizione **valanga** \Rightarrow steamer

Effetto dell'idrocarburo nella miscela di gas

RPC 20-40% di idrocarburo nella miscela di gas

Tubi a streamer limitato 70-80% di idrocarbure

Variazione della gap utile V.S. le fluttuazioni di Landau

No=1

N₀=2

 $N_0=3$

 $N = N_0 EXP(d^*\alpha)$ • Fluttuazioni di Landau Gu **d**2 **d**1 **d**3

Efficienza RPC in funzione della tensione

Efficienza = probabilità di avere almeno una ionizzazione nella gap utile, la gap utile aumenta con l'aumentare del campo elettrico poiché aumenta α(V) e al diminuire della densità del gas o all'aumentare della ionizzazione specifica della particella incidente .Riportiamo un tipico andamento dell'efficienza in funzione della tensione per gas di diversa densità (Neon, Argon)

Miscela argon-butano-freon

 L'aggiunta di alcuni percento di Freon (elettronegativo) forma ioni negative che data la loro bassa velocità di deriva restano mescolati con gli ioni positive diminuendo E2 con conseguente aumento della tensione di transizione valanga streamer e diminuzione della carica indotta

Impulso di streamer indotto con o senza freon

Caso di Freon puro 13B1

Primo esempio di RPC operato in valanga in piena efficienza e risoluzione temporale, bassa carica per impulso, Bassa corrente elevate capacità di conteggio. Ma il 13B1 è fuori produzione per il buco dell'Ozzono

+		
++		
++++	Valanga esponenziale	
++++++		
+++++++++++		
+++- ++ - ++++++ - +		
+ - ++++++++ - +++	Valanga saturata	
+++ - +++ - +++++ - ++		
+ - +++ - +++++++ - +		
	streamer	

Freon 13B1 \longrightarrow C₂H₂F₄

- La sostituzione del Freon 13b1(non più disponibile in commercio a causa del buco dell'ozzono) con il C₂H₂F₄ comporta alcuni problemi:
- 1) ripartenze multiple equi spaziate in tempo
- 2) dopo poche ore di lavoro dell'RPC si osserva un aumento della corrente fino a valori non sostenibili

Entrambi i problemi si risolvono aggiungendo il 5-10% di butano

Miscela C₂H₂F₄(90%)-C₄H₁₀(10%)

- Questa Miscela di gas è proposta per sostituire il 13B1 per operare l'RPC in valanga per le alte rate di un possibile utilizzo in LHC ma si nota un problema quando il rivelatore va in efficienza compaiono gli streamer e si ha un aumento della corrente co una diminuzione delle capacità di conteggio.
- Questo problema si è cercato di risolvere in due modi:
- 1)cercando un idrocarburo capace di assorbire l'ultravioletto dovuto alla ricombinazione e quindi spostare la transizione valanga-streamer a valori di tensione più elevate in modo da separare il regime di valanga dallo streamer
- 2)Diminuire la densità di carica spaziale trasformando parte degli elettroni in ioni negativi

Bassa soglia transizione valanga streamer miscela gas 10%Ar-7%Bu(C₄N₁₀)-83%C₂H₂F₄

Questa miscela usata per operare gli RPC in streamer con un gas alta densità esperimento ARGO in Tibet

RPC average current for different threshold

Miscela C4H10(89%)-C4H10(10%)-13B1(1%)

• Fallita la ricerca di un idrocarburo capace di separare il regime di valanga dalla formazione dello streamer, venne l'idea di aggiungere un gas fortemente elettronegativo il 13B1, con questo metodo si ottenne una separazione di circa un kV su 10 kV Sufficiente per garantire di operare l'RPC in sola valanga con netto aumento della rate di conteggio.

Miscela C₂H₂F₄(89%)-C₄H₁₀(10%)-SF6(1%)

Poiché 13B1 non era disponibile si cerco un gas equivalente, la scelta cadde sul SF6. Questa miscela mostro buone separazione valanga streamer e fu proposta per gli esperimenti LHC. Poiché in LHC si richiedeva la non infiammabilità del gas la miscela fu cambiata in C₂H₂F₄ (94%)-C4H₁₀(5%)-FS₆(1%) in questo caso con elevate flussi di particelle si osserva un aumento della corrente il problema fu risolto aumenta il flusso di gas.

Drop voltage in the Bakelite and gas average current

Diagram of Front-end

• Basic concept to move the gas gain to the amplifier gain to degrease (Q)

Gas and amplifier gain v.s. RPC working mode

Gain gas	RPC working mode	Ga in amplifier
 High gain 	Streamer	low gain
 Medium gain 	saturation avalanche	medium
 Low gain 	avalanche	high

Increase amplifier gain decrease the average charge in the gas and increase the RPC rate-capability

RPC average current for different threshold

Electrons valence evolution RCC and RPC

Conclusioni

- Dalle osservazioni sperimentali fatte negli ultimi 30 anni sull'evoluzione delle scariche elettriche sotto intensi campi elettrici nei gas si è osservato che dipende dai seguenti parametri:
- 1) Miscela del gas (presenza di idrocarburi e gas elettronegativi)
- 2) Caratteristiche di conduzione e di superficie degli elettrodi
- 3) Soglia di discriminazione (elettronica di front-end)
- 4) Geometria degli elettrodi (gradiente del campo elettrico)
- 5) Intensità del campo elettrico