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THE MANDATORY SLIDE WITH BOXES AND ARROWS
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MOCK DATA CHALLENGES

e MDC as multipurpose tools

Develop and exercise analysis code and strategies

Build the data analysis community and bootstrap new groups

Educate the community in the use of common distributed computing tools and
best practices

Iteratively test the distributed computing infrastructure

e Mock Data Challenge support

« MDC1: provide data distribution layer (OSDF: CVMFS + cache) and survey the
activities

« MDCR: provide (possibly a set of) prototype tools for workload management etc.

« MDC3...n: iterate
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THE ET E-INFRASTRUCTURE BOARD

Chairs: Patrice Verdier (IJCLab), SB (INFN-Torino)

Division 1: Software, frameworks, and data challenge support

Chair: Andres Tanasijczuk (UCLouvain)
OSB Liaison: John Veitch (U. Glasgow), Elena Cuoco (EGO)

Division 2: Services and Collaboration Support
Chair: Antonella Bozzi (EGO)

Division 3: Computing and data model, Resource Estimation
Chair: Gonzalo Merino (PIC)

Division 4: Multimessenger alerts infrastructure
Chair: Steven Schramm (U. Geneva)

TTG: Technology Tracking working Group
Chair: Sara Vallero (INFN-Torino)
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WAY FORWARD

Synergies with Virgo: computing needs grow more or less as a.
continuum from Virgo 04 to 05 to Virgo-nEXT to ET, and technologies
keep evolving.

e Distributed computing infrastructure

» CPU power needs grow continuously with sensitivity (CBC PE)
» ET already needs a working and evolving computing infrastructure (for MDCs,

simulations,...)
e Low-latency alert distribution network

» High rates imply high automation, long signals imply new features (e.g., continuous alert
updates)

« Inthe coming years the developments may be driven by running experiments, the GW
community already needs to be present
e Sustainable computing

= And, in general, technology tracking: heterogeneous computing, efficient algorithms, ML,...
= Same message: development is a continuum
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e Use IGWN (=LVK) infrastructure as baseline

« IGWN uses the European computing centres as an extension of the OSG
(which is suboptimal...)

« However, the functionality is there (OSDF + HTCondor)

e Use ESCAP]

i a8 the first toolbox

« First the “Data Lake” (DIOS), then the Virtual Research Environment
« Also, Virtual Observatory, streaming data,...

e Develop a common (Virgo+ET) initial R&D program
« Data Lake (Rucio) for data distribution
« VRE/REANA for data access and job management
« Using ET MDCs as testbeds

<R
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WORKFLOW EVALUATION KITS

e Independent packaged parts of the final architecture

Providing limited functionalities, possibly some as mere demonstrators
But actually to be released to users (i.e., they MUST be functional)

Different implementations may exist, with different tools/technologies used to
provide same functionality

Integration of existing tools, with little bespoke developments, to map “kits” onto
small(ish) projects

e Examples:

ESCAPE Datalake + RucioF'S for data distribution
IAM-based AAI

ESCAPE Datalake + VRE interactive data analysis

OSDF + INFNCloud interactive data analysis

“Packaged” and quality-tested MDC data generation tool
HSF rich metadata tool
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o H'T-PP

« WP8 - very good collaboration with eIB

o ICSC _S2

» “Flagship” use cases development

e M2Tech v2

» WPG6 - see next slides

e ESCAPE/OSCARS proposails
« MADDEN (INFN-TO & UCLouvain)
« ETAP (Université de Genéeve)
= Streaming data for Low-latency?

e ETIC

= See slide about CTLab/TechZoo
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Preparatory Phase for the Einstein Telescope Gravitational Wave
Observatory

Deliverable 8.1

Computing and Data Requirements

Lead beneficiary: UNIGE
Delivery Date: 29 February 2024
Dissemination level: public
Version: 1.0

LR This project has received funding from the European
ission Framework Programme Horizon Europe
oordination and Support action under grant agreement
101079696.
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OSCARS PROPOSALS

e ETAP (Université de Geneve)
« Access to multiple ESCAPE Data Lakes.
« Rich metadata service integration
« Access to multiple rich metadata instances
« A lightweight CRM service monitoring the VRE

e MADDEN (INFN-TO & Université Catholique de Louvain)
« Multi-RI Data Lake managed with Rucio.
« Development and test of RucioF'S
«» BExtend RucioFS to support advanced metadata

e Second OSCARS call (November?)

« Streaming data for LL%
« Something IVOA-related?
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TECHNOLOGY TRACKING CETIC

e ETIC TT platform being built in Torino (“TechZoo™)
« Heterogeneous and expandable HPC platform
« Interoperable with the TeRABIT “HPC Bubble”
« Access layer via INFNCLOUD, commmon with similar facility at INFN-BO

« Usable for code porting, testing, special architectures, accelerators
evaluation etc.

= ...and for regular computing (e.g., numerical relativity)

e Hardware being configured, possibly more coming
e Expect a call for applications in early summer
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COMPLEX OVERALL DATA FLOWS
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A FEW NUMBERS

e Raw data size: about 120TB per month of observation per

observatory

« Includes all control channels from the instrument
» Transferred to custodial storage for safekeeping

o “Aggregated” data for analysis: 10TB/year per observatory
» Includes the single physics channel and summary “data quality” information
» Distributed to computing centres for low-latency and offline analysis
« Published to GWOSC after proprietary period

e Computing: nearly 10° CPU core hours
« to process O3 data, both low-latency and offline
« about 10% of one of the LHC experiments...
= ...or 10.000 years on my Apple M1-based laptop
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THE MANDATORY SLIDE WITH BOXES AND ARROWS
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COMPUTING CHALLENGES

e Data rate (not a challenge)

e Event rate

e Event duration

e Role of Al (with and without hype)

e Reproducibility, scalability, sustainability
e Alert management

e Multimodal analysis

e ...and quantum computing?
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CHALLENGE O: DATA (HERE WE'RE LUCKY)

e Raw interferometer data don’t grow

much with increasing sensitivity ET
« It does grow, however, with instrument

complexity
» O Xinterferometers CMS

» Cryogenics, huge vacuum volume,...
mean many more auxiliary channels

SKA

e What grows is the amount of useful

scientific information embedded in data
« And the computing power needed to wring it out

*to say nothing of weather forecast, genomics, Earth
observation, oil industry, GAFAM and everybody else
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e The event rate scales
with the third power
of the range

« 1 event per week in 03
= 1 every couple of days on O4a

e 10° events/year

» One every few minutes

e Standard techniques
and strategies will

not scale

« In particular, CBC
Parameter Estimation

= Target: 1/10% of an LHC
experiment in Run 5

CHALLENGE 1: EVENT RATE
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CHALLENGE 2: EVENT DURATION

(few) seconds <—>
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CHALLENGE 2: EVENT DURATION

up to hours

<
(BNS)
(and larger parameter space to explore)
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Abstract

Gravitational-wave observations became commonplace in Advanced LIGO-Virgo’s recently concluded third
observing run. 56 nonretracted candidates were identified and publicly announced in near real time. Gravitational
waves from binary neutron star mergers, however, remain of special interest since they can be precursors to high-
energy astrophysical phenomena like y-ray bursts and kilonovae. While late-time electromagnetic emissions
provide important information about the astrophysical processes within, the prompt emission along with
gravitational waves uniquely reveals the extreme matter and gravity during—and in the seconds following—
merger. Rapid communication of source location and properties from the gravitational-wave data is crucial to
facilitate multimessenger follow-up of such sources. This is especially enabled if the partner facilities are
forewarned via an early warning (pre-merger) alert. Here we describe the commissioning and performance of such
a low-latency infrastructure within LIGO-Virgo. We present results from an end-to-end mock data challenge that
detects binary neutron star mergers and alerts partner facilities before merger. We set expectations for these alerts

in future observing runs.

Unified Astronomy Thesaurus concepts: Gravitational waves (678); Gravitational wave astronomy (675); Neutron

stars (1108); High energy astrophysics (739)

1. Introduction

The field of gravitational-wave astronomy has exploded in the
years following the first direct observation of gravitational waves
(GWs) from a binary black hole (BBH) merger (Abbott et al.
2016). Since then, LIGO-Virgo have published 49 candidate
events, many of which were identified in low—lalency;IK these
include two binary neutron star (BNS) and two neutron

27 These authors contributed equally o this work.
28 Some of the 56 have not yet appeared in a LIGO-Virgo publication.

INFN

star-black hole (NSBH) candidates (Abbott et al. 2020a). The
detection of GWs from compact binaries, especially from BBHs,
has become routine. GWs from BNS and NSBH mergers,
however, remain rare. BNS and NSBH mergers are of special
interest due to the possibility of counterpart electromagnetic (EM)
signals. For BNS mergers, in particular, it has long been
hypothesized that the central engine (post merger) can launch
short gamma-ray bursts (SGRBs; Lattimer & Schramm 1976; Lee
& Ramirez-Ruiz 2007), kilonovae (Li & Paczynski 1998; Metzger
et al. 2010), and radio waves and X-rays post merger (Nakar &
Piran 2011; Metzger & Berger 2012). In the special case of the

THE ASTROPHYSICAL JOURNAL LETTERS, 910:L21 (7pp), 2021 April 1 Magee et al.
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Figure 1. The upper half of the figure illustrates the complete pipeline and interaction of the various (sub)systems, mentioned in Section 2, responsible for
disseminating early warning alerts. The waveform evolution with time is shown in the bottom half along with the dependence of the sky-localization area on the cutoff
time of the early warning templates and the accumulated S/N during the binary inspiral. The waveforms, time to merger, S/N, and localizations in this figure are
qualitative.
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Abstract

Machine learning has emerged as a popular and powerful approach for solving problems in
astrophysics. We review applications of machine learning techniques for the analysis of
ground-based gravitational-wave (GW) detector data. Examples include techniques for improving
the sensitivity of Advanced Laser Interferometer GW Observatory and Advanced Virgo GW
searches, methods for fast measurements of the astrophysical parameters of GW sources, and
algorithms for reduction and characterization of non-astrophysical detector noise. These
applications demonstrate how machine learning techniques may be harnessed to enhance the
science that is possible with current and future GW detectors.

1. Introduction

In February 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) [1] Scientific
Collaboration and the Virgo [2] Collaboration announced the first observation of a Gravitational-Wave

© 2020 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Time-frequency representations of different types of glitches occurring in GW data. (Examples from the GravitySpy
project [45]). ML algorithms can help identify the origin of these glitches and increase the sensitivity of GW transient searches.
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Figure 2. A qualitative illustration of how auxiliary channels can help determine the non-astrophysical nature of detector triggers.
The top time series is h(t). The other time series are from detector auxiliary monitoring different sources which are not sensitive
to GWs. The spike in the strain time series at t = 0 occurs also in auxiliary channels 1 and 3. This may indicate that the trigger is
not of astrophysical origin.
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Abstract

Machine learning has emerged as a popular and powerful approach for solving problems in
astrophysics. We review applications of machine learning techniques for the analysis of
ground-based gravitational-wave (GW) detector data. Examples include techniques for improving
the sensitivity of Advanced Laser Interferometer GW Observatory and Advanced Virgo GW
searches, methods for fast measurements of the astrophysical parameters of GW sources, and
algorithms for reduction and characterization of non-astrophysical detector noise. These
applications demonstrate how machine learning techniques may be harnessed to enhance the
science that is possible with current and future GW detectors.

1. Introduction

In February 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) [1] Scientific
Collaboration and the Virgo [2] Collaboration announced the first observation of a Gravitational-Wave

© 2020 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Time-frequency representations of different types of glitches occurring in GW data. (Examples from the GravitySpy
project [45]). ML algorithms can help identify the origin of these glitches and increase the sensitivity of GW transient searches.
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to GWs. The spike in the strain time series at t = 0 occurs also in auxiliary channels 1 and 3. This may indicate that the trigger is
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‘ M) Check for updates ‘

Accelerated, scalable and reproducible Al-driven
gravitational wave detection

E. A. Huerta®'2™, Asad Khan®3, Xiaobo Huang?, Minyang Tian?, Maksim Levental?, Ryan Chard',
Wei Wei?, Maeve Heflin?, Daniel S. Katz?, Volodymyr Kindratenko?, Dawei Mu?, Ben Blaiszik'? and
lan Foster'?

The development of reusable arti intelligence (Al) models for wider use and rigorous validation by the p

to unlock new opportunities in multi-messenger astrophysics. Here we develop a workflow that connects the Data and Learning
Hub for Science, a repository for publishing Al models, with the Hardware-Accelerated Learning (HAL) cluster, using funcX
as a universal distributed computing service. Using this workflow, an ensemble of four openly available Al models can be run
on HAL to process an entire month's worth (August 2017) of ad d Laser r itati -Wave Observatory
data in just seven minutes, identifying all four binary black hole mergers previously identified in this dataset and reporting no

misclassifications. This approach combines advances in Al, distributed computing and scientific data infrastructure to open

new to conduct rep

able cosmic messengers in the fall of 2015 when the advanced

Laser Interferometer Gravitational-Wave Observatory
(LIGO) detectors reported the observation of gravitational waves
consistent with the collision of two massive, stellar-mass black
holes'. Over the last five years, the advanced LIGO and advanced
Virgo detectors have completed three observing runs, report-
ing over 50 gravitational wave sources*’. As advanced LIGO and
advanced Virgo continue to enhance their detection capabilities
and other detectors join the international array of gravitational
wave detectors, it is expected that gravitational wave sources will be
observed at a rate of several per day’.

An ever-increasing catalogue of gravitational waves will enable
systematic studies to advance our understanding of stellar evo-
lution, cosmology, alternative theories of gravity, the nature of
supranuclear matter in neutron stars, and the formation and
evolution of black holes and neutron stars, among other phe-
nomena™'!, Although these science goals are feasible in principle

G ravitational waves were added to the growing set of detect-

data-driven discovery.

of thousands of modelled waveforms for training, but these models
served the purpose of demonstrating that an alternative method for
gravitational wave detection is as sensitive as template matching and
significantly faster, at a fraction of the computational cost.
Research and development in deep learning is moving at an
incredible pace*"*" (see also ref. ** for a review of machine-learning
applications in gravitational wave astrophysics). Specific mile-
stones in the development of artificial intelligence (AI) tools for
gravitational wave astrophysics include the construction of neural
networks that describe the four-dimensional (4D) signal mani-
fold of established gravitational wave detection pipelines, that is,
the masses of the binary components and the z component of the
three-dimensional spin vector in (1, my, sj, s3). This requires the
combination of distributed training algorithms and extreme-scale
computing to train these AI models with millions of modelled
waveforms in a reasonable amount of time*. Another milestone
concerns the creation of Al models that enable gravitational wave
searches over hour-long datasets, keeping the number of misclas-

ata

given the proven detection capabilities of ast ical observato-
ries, it is equally true that established algorithms for the observa-
tion of multi-messenger sources, such as template-matching and
nearest-neighbour algorithms, are compute-intensive and poorly
scalable'>""". Furthermore, available computational resources will
remain oversubscribed, and planned enhancements will be out-
stripped rapidly with the advent of next-generation detectors
within the next couple of years'”. Thus, an urgent rethink is criti-
cal if we are to realize the multi-messenger astrophysics program
in the big-data era'’.

To contend with these challenges, a number of researchers have
been exploring the application of deep learning and of computing
accelerated by graphics processing units (GPUs). Co-authors of this
article pioneered the use of deep learning and high-performance
computing to accelerate the detection of gravitational waves'”'*. The
first generation of these algorithms targeted a shallow signal mani-
fold (the masses of the binary components) and required only tens

In this article, we introduce an Al ensemble, designed to cover
the 4D signal manifold (my, my,si,s3), to search for and find
binary black hole mergers over the entire month of August 2017
in advanced LIGO data”. Our findings indicate that this approach
clearly identifies all black hole mergers contained in that data batch
with no misclassifications. To conduct this analysis we used the
Hardware-Accelerated Learning (HAL) cluster deployed and oper-
ated by the Innovative Systems Laboratory at the National Center
for Supercomputing Applications. This cluster consists of 16 IBM
$C922 POWERY nodes, with four NVIDIA V100 GPUs per node'’.
The nodes are interconnected with an EDR InfiniBand network,
and the storage system is made of two DataDirect Networks all-flash
arrays with SpectrumScale file system, providing 250 TB of usable
space. Job scheduling and resource allocation are managed by the
SLURM (Simple Linux Utility for Resource Management) system.
As we show below, we can process data from the entire month of

'Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, USA. 2University of Chicago, Chicago, IL, USA. *University of Illinois at

Urbana-Champaign, Urbana, IL, USA. Ze-mail: elihu@anl gov
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Figure 1. Gravitational wave detection workflow with AI ensemble. Hanford and Livingston gravitational wave data,
depicted as blue and orange time-series data on the left, are fed into an Al ensemble of four neural network models. The
response of the neural networks to advanced LIGO data is shown to the right of the boxes representing the models. At the
post-processing stage, the outputs of the four neural networks are combined. If the outputs of all the models are consistent with
the existence of a gravitational wave signal, then the post-processing algorithm indicates a positive detection. The bottom panel
showcases a positive detection for the binary black hole merger GW170809.
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The development of reusable arti
to unlock new opportunities in multi:

intelligence (Al) models for wider use and rigorous
-messenger astrophysics. Here we develop a workflow that connects the Data and Learning

by the

Hub for Science, a repository for publishing Al models, with the Hardware-Accelerated Learning (HAL) cluster, using funcX
as a universal distributed computing service. Using this workflow, an ensemble of four openly available Al models can be run
on HAL to process an entire month's worth (August 2017) of advanced Laser Interferometer Gravitational-Wave Observatory
data in just seven minutes, identifying all four binary black hole mergers previously identified in this dataset and reporting no
musclassuﬁcahons This approach combmes advances in Al, distributed computing and scientific data infrastructure to open

new to conduct rep

able cosmic messengers in the fall of 2015 when the advanced

Laser Interferometer Gravitational-Wave Observatory
(LIGO) detectors reported the observation of gravitational waves
consistent with the collision of two massive, stellar-mass black
holes'. Over the last five years, the advanced LIGO and advanced
Virgo detectors have completed three observing runs, report-
ing over 50 gravitational wave sources*’. As advanced LIGO and
advanced Virgo continue to enhance their detection capabilities
and other detectors join the international array of gravitational
wave detectors, it is expected that gravitational wave sources will be
observed at a rate of several per day’.

An ever-increasing catalogue of gravitational waves will enable
systematic studies to advance our understanding of stellar evo-
lution, cosmology, alternative theories of gravity, the nature of
supranuclear matter in neutron stars, and the formation and
evolution of black holes and neutron stars, among other phe-
nomena™'!. Although these science goals are feasible in principle

G ravitational waves were added to the growing set of detect-

data-driven discovery.

of thousands of modelled waveforms for training, but these models
served the purpose of demonstrating that an alternative method for
gravitational wave detection is as sensitive as template matching and
significantly faster, at a fraction of the computational cost.
Research and development in deep learning is moving at an
incredible pace*"*" (see also ref. ** for a review of machine-learning
applications in gravitational wave astrophysics). Specific mile-
stones in the development of artificial intelligence (AI) tools for
gravitational wave astrophysics include the construction of neural
networks that describe the four-dimensional (4D) signal mani-
fold of established gravitational wave detection pipelines, that is,
the masses of the binary components and the z component of the
three-dimensional spin vector in (1, my, sj, s3). This requires the
combination of distributed training algorithms and extreme-scale
computing to train these AI models with millions of modelled
waveforms in a reasonable amount of time*. Another milestone
concerns the creation of Al models that enable gravitational wave
searches over hour long dalasets, keeping the number of misclas-

ata

given the proven detection capabilities of ast 1 observato-
ries, it is equally true that established algorithms for the observa-
tion of multi-messenger sources, such as template-matching and
nearest-neighbour algorithms, are compute-intensive and poorly
scalable'>""". Furthermore, available computational resources will
remain oversubscribed, and planned enhancements will be out-
stripped rapidly with the advent of next-generation detectors
within the next couple of years'”. Thus, an urgent rethink is criti-
cal if we are to realize the multi-messenger astrophysics program
in the big-data era'’.

To contend with these challenges, a number of researchers have
been exploring the application of deep learning and of computing
accelerated by graphics processing units (GPUs). Co-authors of this
article pioneered the use of deep learning and high-performance
computing to accelerate the detection of gravitational waves'”'*. The
first generation of these algorithms targeted a shallow signal mani-
fold (the masses of the binary components) and required only tens

In this article, we introduce an Al ensemble, designed to cover
the 4D signal manifold (my, my,si,s3), to search for and find
binary black hole mergers over the entire month of August 2017
in advanced LIGO data”. Our findings indicate that this approach
clearly identifies all black hole mergers contained in that data batch
with no misclassifications. To conduct this analysis we used the
Hardware-Accelerated Learning (HAL) cluster deployed and oper-
ated by the Innovative Systems Laboratory at the National Center
for Supercomputing Applications. This cluster consists of 16 IBM
$C922 POWERY nodes, with four NVIDIA V100 GPUs per node'’.
The nodes are interconnected with an EDR InfiniBand network,
and the storage system is made of two DataDirect Networks all-flash
arrays with SpectrumScale file system, providing 250 TB of usable
space. Job scheduling and resource allocation are managed by the
SLURM (Simple Linux Utility for Resource Management) system.
As we show below, we can process data from the entire month of

'Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, USA. 2University of Chicago, Chicago, IL, USA. *University of Illinois at
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e Space-based (solar orbit) triangular laser interferometer
e 2.5 million km arms, launch planned in 2034
e Very low frequencies: complementary to ground-based interferometers

e Very massive (astrophysical) black holes, very early alerts for BNS, ultra-compact binaries,
extreme mass ratio inspirals, precision tests of GR,...
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THE MULTIMESSENGER ECOSYSTEM

A large number of existing and future facilities will produce
and consume alert triggers. For example, ESFRI-only:

Groud-based optical telescopes, like the Extremely Large Telescope: 5-
mirror 39m optical telescope for the ESO on Cerro Armazones, Chile.

Large radiotelescope arrays, like the Square Kilometer Array: huge multi-
band radiotelescope arrays in Africa and Australia

Facilities for cosmic ray astronomy, like the Cherenkov Telescope Array:
Cherenkov telescopes for highest-energy gamma-ray astronomy, in the
Canary Islands and Chile

Neutrino detectors, like KM3NeT: underwater network of neutrino detectors
in the Mediterranean

...and many more.
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CHALLENGE 6: ALERT MANAGEMENT
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CHALLENGE 7: MULTIMODAL ANALYSIS
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Computational challenges for multimodal

astrophysics

Elena Cuoco ©'%3%, Barbara Patricelli©'34, Alberto less?* and Filip Morawski®

In the coming decades, we will face major

when the i of third:

gravitational wave detectors will be such that they will be able to detect a high nnmb;r (of the order of 7 x 10* per year) of

multi-messenger events from binary neutron star mergers, sii
tion of multimodal artificial intelligence i for multi

lar to GW 170817. In this Perspective, we discuss the applica-

ion from different

signal emissions.

cence of two neutron stars through gravitational waves

(GWs)'; the intense electromagnetic (EM) follow-up cam-
paign performed after the GW detection also allowed for the detec-
tion of EM radiation across the whole EM spectrum in association
with this event’.

Multi-messenger (for example, GW and EM) astrophysics® has
revealed itself as a major avenue to explore the Universe but, at the
same time, it has introduced new computational challenges, con-
sidering the compelling need for a real-time observation of these
astrophysical events. In fact, to be able to proceed with an analy-
sis of the EM counterpart of an event revealed by GW detectors,
it is essential to have a rapid follow-up of the event, and for this
reason, estimating the parameters defining the source in a few sec-
onds is crucial. Another important aspect to be taken into account
is that, in the coming years, we expect an increase in the astro-
physical data rates and data complexity from the different detectors
that will become operational or will be upgraded. In fact, current
GW detectors (Advanced Laser Interferometer Gravitational-wave
observatory (Advanced LIGO)’, Advanced Virgo® and the Kamioka
Gravitational Wave Detector (KAGRA)*’) will be upgraded at
higher sensitivity, and third-generation GW detectors such as the
Einstein Telescope (ET)* or Cosmic Explorer (CE)’ will become
operative, with the consequent increase in the rate of GW detec-
tions. Furthermore, these GW detectors will take data in synergy
with new telescopes such as the Ch kov Telescope Array (CTA)"
to detect very-high-energy gamma-ray bursts (GRBs), the Rubin
Observatory’s Legacy Survey of Space and Time (LSST)"" for optical
surveys, the Square Kilometer Array (SKA) for the radio surveys'
and new neutrino detectors, such as the Cubic Kilometre Neutrino
Telescope (KM3NeT)". Many new multi-messenger discoveries are
therefore expected in the future.

To obtain more information about the science of future multi-
messenger observations, it is desirable to analyze almost simultane-
ous signals with a pipeline merging the different signal information.
To accomplish this task, we have to deal with the analysis of large
streams of heterogeneous EM, GW and neutrino data, with differ-
ent data formats, different detector sensitivity and different localiza-
tion capability, considering the signal delays and duration as well as
data in the various ing centers. For instance,
we expect that every night, the LSST will acquire 20 terabytes of data

O 117 August 2017, we had the first observation of the coales-

fusing the il

and will publicly release up to 10million alerts per night in almost
real time to report on variable sources (to find out more, see https://
www.lsst.org/scientists/keynumbers).

The SKA’s survey capability will be able to detect thousands of
transient sources per night, and the distributed alerts will allow
other telescopes to observe them at other frequencies''. Current
GW detectors acquire data with a rate of about 5terabytes per day
for a single detector, considering not only the strain channel that
contains potential gravitational signals, but also all the auxiliary
channels that are used for detector control and monitoring of ambi-
ent and intrinsic noise. In fact, many transient signals present in
the main channel are actually due to noise sources (also known as
glitches). It is important that the analysis pipelines are able to dis-
tinguish the GW signal from the glitches and it is for this reason
that the veto procedure is based on the analysis of the data acquired
on the auxiliary channel"”. A larger flux rate is expected with third-
generation detectors, where also the very-low-frequency range
will be explored, and should be monitored by additional monitor-
ing sensors. At the same time, we expect that the ET will be able
to detect about 10° compact binary coalescence (CBC) mergers
per year'® (more details in “The importance of multi-messenger
astrophysical observations’).

We expect a growing need for developing novel analysis tools
that will efficiently combine the information generated by the
various messengers, to obtain insights into the physics of the astro-
physical sources and their environment. The requirements are
twofold: on the one hand, we will need a fast and efficient analysis
to handle the large amount of data and to send alarms in the short-
est possible time; on the other hand, we will need a new analysis
paradigm that allows the combination of signals and informa-
tion to maximize our knowledge of transient astrophysical events
with multi-messenger aspects. Whlle for the first point we can
also focus on putational and imization aspects,
for the second point, we should work on a global analysis of the
information received. Moreover, in the latter case the challenge is
additionally complicated by the need to develop a methodology
capable of both, real-time and long-duration analysis, as various
astrophysical signals are d with extremely different tim-
escales. In this Perspective, we focus on describing the challenges
for the analysis of data from astrophysical transient events with
multimodal emission.

‘European Gravitational Observatory (EGO), Pisa, ltaly. 2Scuola Normale Superiore, Pisa, Italy. 2INFN, Sezione di Pisa, Pisa, Italy. “University of Pisa,
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Fig. 3 | The astrophysical event's conceptual MML workflow. A multi-messenger astrophysical transient event can manifest itself via various signal types,
including GW, y-rays, X-rays, optical and radio emission, and neutrinos. Different modalities have their own representation in various domains. We can use
the extracted features to perform model prediction in the first stage by using deep learning and ML models. Furthermore, we can analyze the predictions
later by combining them in the global MML model.
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CrossMark
Abstract
After the first detection of a gravitational wave in 2015, the number of suc-
cesses achieved by this innovative way of looking through the Universe has not
stopped growing. However, the current techniques for analyzing this type of
events present a serious bottleneck due to the high computational power they
require. In this article we explore how recent techniques based on quantum
algorithms could surpass this obstacle. For this purpose, we propose a quantiz-
ation of the classical algorithms used in the literature for the inference of grav-
itational wave parameters based on the well-known quantum walks technique
applied to a Metropolis—Hastings algorithm. Finally, we develop a quantum
environment on classical hardware, implementing a metric to compare quantum
versus classical algorithms in a fair way. We further test all these developments
in the real inference of several sets of parameters of all the events of the first
detection period GWTC-1 and we find a polynomial advantage in the quantum
algorithms, thus setting a first starting point for future algorithms.
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Metropolis—Hastings algorithms

(Some figures may appear in colour only in the online journal)
* Author to whom any correspondence should be addressed.

Original Content from this work may be used under the terms of the Creative Commons Attribution
4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOL

1361-6382/23/045001+15$33.00 © 2023 The Author(s). Published by IOP Publishing Ltd  Printed in the UK 1

AND QUANTUM COMPUTING?
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Quantum algorithm for gravitational-wave matched filtering

Sijia Gao®," Fergus Hayes®," Sarah Croke ®, Chris Messenger ©, and John Veitch
SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom

®| (Received 3 September 2021; accepted 7 March 2022; published 4 April 2022)

Quantum computational devices currently under development have the potential to accelerate data analysis
techniques beyond the ability of any classical algorithm. We propose the application of a quantum algorithm for
the detection of unknown signals in noisy data. We apply Grover’s algorithm to matched filtering, a signal
processing technique that compares data to a number of candidate signal templates. In comparison to the
classical method, this provides a speedup proportional to the square root of the number of templates, which
would make possible otherwise intractable searches. We demonstrate both a proof-of-principle quantum circuit
implementation and a simulation of the algorithm’s application to the detection of the gravitational wave signal

GW150914. We discuss the time ity and space

of our algorithm as well as its i

for the currently computationally limited searches for continuous gravitational waves.

DOI: 10.1103/PhysRevResearch.4.023006

L INTRODUCTION

Quantum computing holds enormous potential for compu-
tational speedup of certain tasks, offering the possibility of
solving classically intractable problems, in particular, in quan-
tum chemistry and many-body physics [1,2]. The technology
has seen rapid development in the last few years, resulting in
processors with 50-100 qubits, and the first demonstrations
of clear quantum advantage over classical computation [3,4].
Quantum algorithms (see Ref. [5] for an accessible overview)
are being explored for more and more fields of endeavor:
for example, finance [6], quantum simulation [7], particle
physics [8,9], machine learning [10,11], and, as the technol-
ogy matures and a new generation of software developers
adopt quantum programming languages, it may be anticipated
that new and unexpected applications will be discovered. A
particularly versatile quantum subroutine is Grover’s search
algorithm [12], which finds a marked solution in a large un-
structured database. Grover’s algorithm, one of the earliest
proposed quantum algorithms, provides a square-root speedup
over classical search. This is less dramatic than the expo-
nential speedup promised by, e.g., Shor’s algorithm [13], but
can nevertheless provide a significant practical advantage for
problems with a large search space. By defining the search
space and conditions for a desired solution, Grover’s algo-
rithm may be applied to any computational problem with a
limited structure and has found use in minimum finding [14],
clustering and nearest-neighbor algorithms for supervised and
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unsupervised learning [15,16], and pattern matching [17-19]
to name but a few. In this paper, we propose the use of
Grover’s search in quantum algorithms for matched filter-
ing, with applications in gravitational wave (GW) astronomy.
These algorithms inherit the square root speedup of Grover’s
search algorithm, an improvement which could enable GW
searches currently intractable with state-of-the-art classical
techniques.

Matched filtering is a signal processing technique [20]
in which an exhaustive search is performed over a bank of
templates to find the template that when correlated with the
data returns the highest detection statistic [21], making it a
natural candidate for a quantum speedup through Grover’s
algorithm. In GW matched-filtering a geometric definition of
distance within the parameter space is defined based on the
relative loss in signal-to-noise ratio (SNR) between a tem-
plate and a potential signal. The required distribution of the
templates in the search space are chosen so the distance (or
overlap) between adjacent templates is constant throughout
the space. Depending on the specific data analysis problem,
the number of templates can range up to ~10'2 [22], resulting
in a total computational time of ~10° CPU hours. The spacing
of templates in the parameter space determines the efficiency
of the search but also the overall number of templates, and the
sensitivity of searches for certain classes of signals (e.g., con-
tinuous wave sources) is currently computationally limited.
Thus, even a modest square-root speedup could enable the
detection of signals which would be infeasible with classical
techniques.

Key to our proposed algorithms is the fact that the poten-
tial signals in GW astronomy are well-modeled by general
relativity, and the templates may be readily computed as
part of the matching procedure. This eliminates the need to
preload the database into quantum random access memory
(qQRAM) [23], and thus avoids hidden complexity associated
with this loading step, as well as doubts about the experimen-
tal feasibility of constructing qRAM [24-27]. The presented

Published by the American Physical Society

Big Science: computing challenges in the Einstein Telescope project| Stefano Bagnasco, INFN
Erice Science Communication and Journalism International School 2023 | 32/1260



THE ET E-INFRASTRUCTURE BOARD

Chairs: Patrice Verdier (IJCLab), SB (INFN-Torino)

Division 1: Software, frameworks, and data challenge support

Chair: Andres Tanasijczuk (UCLouvain)
OSB Liaison: John Veitch (U. Glasgow), Elena Cuoco (EGO)

Division 2: Services and Collaboration Support
Chair: Antonella Bozzi (EGO)

Division 3: Computing and data model, Resource Estimation
Chair: Gonzalo Merino (PIC)

Division 4: Multimessenger alerts infrastructure
Chair: Steven Schramm (U. Geneva)

TTG: Technology Tracking working Group
Chair: Sara Vallero (INFN-Torino)
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WAY FORWARD

Synergies with Virgo: computing needs grow more or less as a.
continuum from Virgo 04 to 05 to Virgo-nEXT to ET, and technologies
keep evolving.

e Distributed computing infrastructure

» CPU power needs grow continuously with sensitivity (CBC PE)
» ET already needs a working and evolving computing infrastructure (for MDCs,

simulations,...)
e Low-latency alert distribution network

» High rates imply high automation, long signals imply new features (e.g., continuous alert
updates)

« Inthe coming years the developments may be driven by running experiments, the GW
community already needs to be present
e Sustainable computing

= And, in general, technology tracking: heterogeneous computing, efficient algorithms, ML,...
= Same message: development is a continuum
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e Use IGWN (=LVK) infrastructure as baseline

« IGWN uses the European computing centres as an extension of the OSG
(which is suboptimal...)

« However, the functionality is there (OSDF + HTCondor)

e Use ESCAP]

i a8 the first toolbox

« First the “Data Lake” (DIOS), then the Virtual Research Environment
« Also, Virtual Observatory, streaming data,...

e Develop a common (Virgo+ET) initial R&D program
« Data Lake (Rucio) for data distribution
« VRE/REANA for data access and job management
« Using ET MDCs as testbeds

<R
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ESCAPE

The new ESCAPE Collaboration

ESCAPE cc

Operating the community-
based “Competence Center”
for EOSC-alignment, train and
support, extended outreach,
financial model for services and

work programme

Ny

/ESCAPE EVSI

R&I for an “European Virtual
Institute for Research Software”
for advanced technologies

( Entities J

networking with other SCL-CCs/

OEe0SC

ESCAPE =

European Science Cluster of Astronomy &
Particle physics ESFRI research Infrastructures

horizon

\ VRE services

3 ESCAPE ® 22 ESCAPE

Data Infrastructure I Open-source Scientific Software

for Open Science Q coce | and Service Repository
Access physical & e-infrastructures = | Aggregator & Integrators y
Processing & Analysis @) E@ | Sharing and Discover oiq“@;o (Qb L?@
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ESCAPE spss

Building synergies on “Sector Data
Spaces” for Society: Green deal, Health,
Manufacturing, Education and Skills

ESCAPE cArs

Career development and rewarding for
researcher committing in Open Science.
Planning, tracking, and assessing
scientific knowledge production

Challenging “Open Science Objectives” by RI Bring the FAIRness within technology, R&D
commitments in Open Science Projects and innovation projects as well as explore
(OSP) as well as Cross-Cluster Open Science new “close-to-sensors” low-latency open-
Projects (COSP) data science

ESCAPE coso {ESCAPE TECH

Giovanni Lamanna
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MOCK DATA CHALLENGES

e MDC as multipurpose tools

Develop and exercise analysis code and strategies

Build the data analysis community and bootstrap new groups

Educate the community in the use of common distributed computing tools and
best practices

Iteratively test the distributed computing infrastructure

e Mock Data Challenge support

« MDC1: provide data distribution layer (OSDF: CVMFS + cache) and survey the
activities

« MDCR: provide (possibly a set of) prototype tools for workload management etc.

« MDC3...n: iterate
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WORKFLOW EVALUATION KITS

e Independent packaged parts of the final architecture

Providing limited functionalities, possibly some as mere demonstrators
But actually to be released to users (i.e., they MUST be functional)

Different implementations may exist, with different tools/technologies used to
provide same functionality

Integration of existing tools, with little bespoke developments, to map “kits” onto
small(ish) projects

e Examples:

ESCAPE Datalake + RucioF'S for data distribution
IAM-based AAI

ESCAPE Datalake + VRE interactive data analysis

OSDF + INFNCloud interactive data analysis

“Packaged” and quality-tested MDC data generation tool
HSF rich metadata tool
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o H'T-PP

« WP8 - very good collaboration with eIB

o ICSC _S2

» “Flagship” use cases development

e M2Tech v2

» WPG6 - see next slides

e ESCAPE/OSCARS proposails
« MADDEN (INFN-TO & UCLouvain)
« ETAP (Université de Genéeve)
= Streaming data for Low-latency?

e ETIC

= See slide about CTLab/TechZoo

PROJECTS £ MORE PROJECTS
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Preparatory Phase for the Einstein Telescope Gravitational Wave
Observatory

Deliverable 8.1

Computing and Data Requirements

Lead beneficiary: UNIGE
Delivery Date: 29 February 2024
Dissemination level: public
Version: 1.0

LR This project has received funding from the European
ission Framework Programme Horizon Europe
oordination and Support action under grant agreement
101079696.
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WPG6: Technologies for multimessenger astronomy together
with CTA, KM3NeT, Virgo.

Task 6.1: efficient data processing
e Harly robust processing = less to process later = better energy efficiency

e Mostly supervised ML to enable fast/real-time data processing to enhance MM event
identification

Task 6.2: sustainable large-scale computing
Involved: CNAF (Daniele Cesini), INFN-Torino/CTLab (SB)

e How to sustainably scale computing to handle large MM event rates and mitigate energy/carbon
costs

e Work with large computing centres to study how to scale-up computing for large MM event rates
Together with academic partners to bridge the gap between RIs and computing centres

Task 6.3: multimessenger alert tools

Involved: INFN-PG (Giuseppe Greco, task leader)

e How to ensure different research infrastructures can communicate effectively

e Common alert formats, brokers, databases, etc - all while ensuring alerts follow FAIR principle
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OSCARS PROPOSALS

e ETAP (Université de Geneve)
« Access to multiple ESCAPE Data Lakes.
« Rich metadata service integration
« Access to multiple rich metadata instances
« A lightweight CRM service monitoring the VRE

e MADDEN (INFN-TO & Université Catholique de Louvain)
« Multi-RI Data Lake managed with Rucio.
« Development and test of RucioF'S
«» BExtend RucioFS to support advanced metadata

e Second OSCARS call (November?)

« Streaming data for LL%
« Something IVOA-related?
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TECHNOLOGY TRACKING CETIC

e ETIC TT platform being built in Torino (“TechZoo™)
« Heterogeneous and expandable HPC platform
« Interoperable with the TeRABIT “HPC Bubble”
« Access layer via INFNCLOUD, commmon with similar facility at INFN-BO

« Usable for code porting, testing, special architectures, accelerators
evaluation etc.

= ...and for regular computing (e.g., numerical relativity)

e Hardware being configured, possibly more coming
e Expect a call for applications in early summer
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