Contribution of non-AGN sources to diffuse high energy astrophysical neutrino

Antonio Marinelli (Università Federico II, INFN Napoli, INAF OAC)

Cosmic-ray and Dark Matter

IO-II/II/2024

TAsP Meeting And brainstorming

Multimessenger connections

From J.A Aguilar RICAP24

Gamma-rays, neutrinos, and cosmic rays connection

- Diffuse background with 3 different messengers:
 - Similar energy densities...
 - ...but also evidence of different origin
- Interesting interfaces between messengers

- $-\hat{n} = 81$
- $-\hat{\gamma} = 3.2$

INFŃ

• It also appears in the the list of 110 pre-define sources

RESEARCH

RESEARCH ARTICLE

NEUTRINO ASTROPHYSICS

Evidence for neutrino emission from the nearby active galaxy NGC 1068

IceCube Collaboration*†

NGC 1068 Neutrino Flux

Science 378 (2022) 538-543

- TXS 0506+056 and NGC 1068 contribute each ~1% of the total astrophysical diffuse neutrino
- Measured neutrino flux exceeds TeV gamma-ray upper limits

The peculiarities of NGC1068

NGC 1068 An AGN with an obscured black hole

- Very active starburst spiral galaxy.
- It is close! (~14.4 Mpc)
- It hosts a Compton-thick AGN
- AGN powered by a SMBH with
- mass ~107 108 M_{\odot}
- Intrinsically the brightest Seyfert in the X-ray band

The Disk-Corona Model

- Electron and protons are accelerated in the high field regions associated with the black hole and the accretion disk
- They produce neutrinos in the optical thick corona
 - Gamma-rays are absorbed

In several IceCube presentations used as a universal description of neutrino emission from the entire AGN class and responsible for most of the astrophysical neutrinos observed by IceCube.

Setting the multicomponent energy ranges

Hadronic production in the SBGs

The Starburst Galaxy M82

Credit:

INFN

NASA, ESA and the Hubble Heritage Team (STScl/ AURA). Acknowledgment: J. Gallagher (University of Wisconsin), M. Mountain (STScl) and P. Puxley (NSF).

p-p interaction is likely to occur when density of gas higher than density of radiation (for example in Starburst Galaxies)

Properties of SBGs

- ~100 Myr phase in the life of a Galaxy
- High Star Formation Rate (10-100 times higher than Milky Way), mainly concentrated into the nucleus
- They are abundant ($-10^4 10^5 \, \text{Gpc}^{-3}$)
- Strong Magnetic field $10^2 \cdot 10^3 \mu$ **G** and high degree of magnetic turbulence which traps protons for ~ 10^5 years (**Reservoirs**)
- Not very brilliant in gamma-rays (only a small portion currently observed)

Starburst Galaxies properties

Interstellar gas as the target

$$p + p \rightarrow \pi^+ \pi^- \pi^0 \dots$$

Neutrinos and γ-rays from pions decays:

$$\begin{split} f(p) \left(\frac{1}{\tau_{\rm loss}(p)} + \frac{1}{\tau_{\rm adv}(p)} + \frac{1}{\tau_{\rm diff}(p)} \right) &= Q(p) \\ & \text{injected CR from SN explosion} \\ Q(p) \propto \left(\frac{p}{m_p} \right)^{-\alpha} \cdot e^{-p/p_{\rm max}} \\ \mathcal{T}_{\rm loss} &\simeq \tau_{\rm pp} \propto \frac{1}{n_{\rm ISM}} \\ \end{split}$$

• The denser the SBN, the more the energy losses affects the CR transport

$$\cdot \tau_{\rm adv} = R/v_{\rm wind}$$
 $\cdot \tau_{\rm diff} = R^2/D$

 $R_{\rm SBN} = 200 \,\mathrm{pc}$ $v_{\rm wind} = 500 \,\mathrm{km/s}$

INFN

 $\begin{array}{l} \pi^{\pm} \to e^{\pm} \, \nu_e \, \nu_\mu \, \overline{\nu}_\mu \\ \pi^0 \to \gamma \, \gamma \end{array}$

Star formation rate can trace the ν emission

Important to estimate the diffuse ν emission of this galaxies population, we can follow the star formation density along the distance considered.

A proposed multimessenger fit

The Gamma-Ray Contributions:

- I. SBGs
- 2. Blazar + Electromagnetic Cascades
- 3. Radio Galaxies

For Blazars and Radio Galaxies, we used the estimations given by Ajello et al. 2015 (ArXiv: 1501.05301)

The Neutrino Contributions:

- I. SBGs
- 2. Blazars

For Blazars, we used the estimations given by Palladino et. Al 2019 (ArXiv:1806.04769)

MNRAS 503 4032 (2021) Ambrosone, Chianese, Fiorillo, A.M., Miele, Pisanti **Observational Samples Used** 7.5 years HESE Extragalactic gamma-ray Background (EGB) 2. **6 years Cascades** $\frac{N_{Blazars}-0.80}{0.11}\Big)^2$ $\chi^{2}_{\nu+\gamma}(N_{SBG}, N_{RG}, N_{Blazars}, p^{max}) = \chi^{2}_{\nu} + \chi^{2}_{\gamma} + \left(\frac{N_{Blazars} - 1}{0.26}\right)^{2} + \left(\frac{N_{RG} - 1}{0.65}\right)^{2} + \left(\frac{N_{RG} -$ It comes from the positional limit of Point They come from uncertainties of the Non-SBG components Sources above 50 GeV (Lisanti et al. 2016) INFŃ A.MARINELLI 11 DM & CR NAPOLI 11/11/2024

A proposed multimessenger fit

MNRAS 503 4032 (2021) Ambrosone,

Chianese, Fiorillo, A.M., Miele, Pisanti

2 sigmas allowed SED considering Fermi-LAT EGB and IceCube HESE data

2 sigmas allowed SED considering Fermi-LAT EGB and IceCube CASCADE data

A proposed multimessenger fit

At 2 sigma level the "blending" scenario can account up to 40% of IceCube HESE measured flux, moreover at 1 sigma a Pmax up to 50 PeV is permitted, however a cutoff ~ 10 PeV is favored.

Diffuse Fluxes of SBGs using the entire Fermi-LAT data

A.MARINELLI

Probing the SBG Calorimetric Scenario

Tracing Neutrino Emission from Local resolved SFGs

Neutrino Expectations: KM3NeT Forecast Gamma-Rays Expectations. CTA Forecast

Future γ/ν observations will be fundamental to:

Discover if Neutrino Astronomy is a tracer for star-forming activity

✦ Probe the calorimetric fraction inside SBG: If there will be no detection, nearby SBGs are dominated by diffusion and not by either p-p collisions or advection.

High energy emission from Milky Way: a new piece of diffuse flux puzzle : VHE ν

 $\Pi_0 \rightarrow$ A Fermi-LAT coll. template based on a homogeneous diffusion coefficient along the Milky Way longitude and a 2012 molecular gas map.

KRA- γ_5 and KRA- $\gamma_50 \rightarrow$ A template obtained with DRAGON and Gamma-sky codes based on a inhomogeneous diffusion coefficient and a CR spectral hardening toward the Milky Way center (radial dependent) and two different CR cutoffs at 5 and 50 PeV

IceCube observation of Galactic neutrinos

obtained best fit normalizations seems the more motivated case.

DM & CR NAPOLI 11/11/2024

 $0.11 \times MF$

KRA⁵⁰

INFŃ

 3.72×10^{-5} (3.96 σ)

ν expectations from the new KRA- γ models

The updated KRA-gammas remain consistent with the previous KRA-gamma with CR cutoff at 5 PeV.

A diffuse emission associated to non AGNs

Milky Way diffuse ν emission spatially related to Galactic disk while the SBG diffuse emission is a isotropic component

The absence of a AGN for the SFG population does not prevent a accountable diffuse neutrino emission when integrating over high redshifts.

SUMMARY

- Galaxies who don't host a AGN can still be a important astrophysical component to explain the IceCube diffuse observations.
- Star forming abundance can be a tracer of neutrino emission.
- Single Starburst galaxies are hardly resolved as a point like ν emitters however the ν diffuse component becomes important when integrating up to high redshifts.
- IceCube and Antares start to characterize the Galactic neutrino emission (still nice questions to go through).
- The low energy part of the IceCube observed astrophysical neutrinos can be explained by reservoirs emission: starforming galaxies+ Milky Way

BACK UP SLIDES

Relation star-formation and γ -rays luminosity

There is a tight correlation between the γ -ray luminosity and the Infrared (IR) Luminosity

Redshift interval: $0 \le z \le 8$

Analysing a catalogue of 70 sources with 15 years of Fermi-LAT data

A new analysis

The IR Luminosity is strictly connected to the Star Formation Rate (SFR)

SFR =
$$1.36 \cdot 10^{-10} \left(\frac{L_{IR}}{L_{\odot}}\right) \left(1 + \sqrt{\frac{10^9 L_{\odot}}{L_{IR}}}\right) [M_{\odot} \, \text{yr}^{-1}]$$

- The higher the SFR, the more CRs get injected in SBG disk
- The higher the SFR, the more dense the system is and the CRs are trapped into the system (Complete CR calorimetry)

JCAP08(2024)040 Ambrosone,

Chianese, + A.M.

Properties of Discovered Sources

14 sources are discovered with more than $5\sigma(TS > 25)$

 $E_{\gamma} \in [1 - 1000] \,\mathrm{GeV}$

Take a look at 2402.18638 [astro-ph.HE]

Source	D_L [Mpc]	$L_{ m IR} \ [10^{10}{ m L}_{\odot}]$	$\frac{F_{\rm 1-1000GeV}}{[10^{-10}\rm phcm^{-2}s^{-1}]}$	$\overset{\phi_0}{[10^{-12}{\rm MeV}^{-1}{\rm cm}^{-2}{\rm s}^{-1}]}$	γ	TS (σ)	$\mathrm{TS}_{\mathrm{SM}}$
M 82	3.53	5.6	9.8 ± 0.5	1.31 ± 0.10	2.34 ± 0.06	1104(33)	0.35
NGC 253	3.56	3.6	8.1 ± 0.9	1.08 ± 0.10	2.33 ± 0.08	730(27)	1.03
ARP 220	84.3	$1.7\cdot 10^2$	1.6 ± 0.6	$(2.0\pm0.7)\cdot10^{-1}$	2.2 ± 0.2	50(7.1)	-
NGC 1068	10.1	10.0	4.5 ± 0.5	$(5.8\pm0.9)\cdot10^{-1}$	2.28 ± 0.15	238(15)	-
Circinus	4.21	1.7	5.1 ± 1.3	$(6.2 \pm 1.7) \cdot 10^{-1}$	2.23 ± 0.14	78 (8.8)	-
SMC	0.06	$7.1 \cdot 10^{-3}$	$(3.0 \pm 0.3) \cdot 10^1$	4.4 ± 0.3	2.44 ± 0.06	801 (28)	4.13
M 31	0.77	$2.3\cdot10^{-1}$	3.1 ± 0.8	$(6.3 \pm 1.3) \cdot 10^{-1}$	3.0 ± 0.3	74.6 (8.6)	0.22
NGC 2146	17.2	12.6	1.3 ± 0.5	$(1.5\pm0.5)\cdot10^{-1}$	2.16 ± 0.18	41.5(6.4)	-
ARP 299	48.6	72.6	1.3 ± 0.5	$(1.7\cdot 0.6)\cdot 10^{-1}$	2.3 ± 0.2	46.4(6.8)	-
NGC 4945	3.72	2.8	9.6 ± 1.3	1.34 ± 0.15	2.40 ± 0.08	412 (20)	-
NGC 2403	3.18	0.15	1.5 ± 0.5	$(10 \pm 4) \cdot 10^{-2}$	1.92 ± 0.17	52.8(7.3)	-
NGC 3424	27.2	2.1	10 ± 5	$(1.3\pm0.5)\cdot10^{-1}$	2.3 ± 0.3	28(5.3)	-
LMC	0.05	$5.2 \cdot 10^{-2}$	$(1.38 \pm 0.07) \cdot 10^2$	$(1.85 \pm 0.08) \cdot 10^1$	2.41 ± 0.04	1493 (38)	0.24
M 33	0.91	0.14	$1.2\pm0.6^{\dagger}$	$(1.8\pm0.7)\cdot10^{-1}$	2.5 ± 0.3	16 (4)	-

Two sources have a strong hint of γ -ray emissions($\sim 4\sigma$)

M83, NGC 1365

- JCAP08(2024)040 Ambrosone, Chianese, + A.M.
- All spectra are consistent with simple power-laws

Calorimetric Fraction and Star Formation Rate

$$f(p)\left(\frac{1}{\tau_{\rm loss}(p)} + \frac{1}{\tau_{\rm adv}(p)} + \frac{1}{\tau_{\rm diff}(p)}\right) = Q(p)$$

Average
$$F_{
m cal}$$
 between $10-10^4\,{
m GeV}$ for CRs

 $f(p) \simeq Q(p)\tau_{pp}F_{cal}$ Fraction of CRs which actually interact and produce γ and ν

$$R_{\rm SN}[{\rm yr}^{-1}] \simeq \frac{1}{83} {\rm SFR}[{\rm M}_{\odot} {\rm yr}^{-1}]$$

 $F_{\rm cal}$ correlates with the SFR and the Supernovae explosion rate

 $F_{\text{cal}} = A \left(\frac{R_{\text{SN}}}{\text{yr}^{-1}}\right)^{\beta} \left(1 + A \left(\frac{R_{\text{SN}}}{\text{yr}^{-1}}\right)^{\beta}\right)^{-1}$ $A = 0.7^{+0.3}_{-0.2} \ \beta = 0.39 \pm 0.07$

Calorimetric Fraction and Star Formation Rate

Properties of the Neutrino Flux

Redshift Distribution of the Neutrino Flux

extragalactic gamma-ray background

- Fermi-LAT resolved many individual sources belonging to different classes, Blazars dominates the EG samples.
- Limit on PS above 50 GeV varies from 68% (Lisanti et al. 2016) to 86% (Ackermann et al. 2016) of the EGB

Starforming and Starburst galaxies gamma-ray component needs a better definition due to the small number of resolved ones at HE

Gamma-ray emission from the Milky Way

28

INFN A.

A.MARINELLI

Galactic diffuse gamma-ray emission

$$e + N \rightarrow e^{'} + \gamma + N^{'}$$

Bremsstrahlung emission follows the ISM gas distribution

 $p + p \rightarrow \pi_0 \pi_+ \pi_ \pi^+ o \mu^+ + \nu_\mu$ $\mu^+ \rightarrow \bar{\nu}_{\mu} + \nu_e + e^+$

Diffuse emission totally correlated with the <u>propagation of cosmic rays</u> <u>dominated</u> by protons and He. Hadronic emission follows ISM gas distribution as well.

 $e + \gamma \rightarrow e' + \gamma'$

IC emission depends on the energy density of the ISRFs

A.MARINELLI

Inhomogenous diffusion model

A better look to the IceCube results

The best fit normalization of the π_0 model (4 times the expected value) present a strong tension with Galactic diffuse Fermi-LAT observations.

A better look to the IceCube results

ν expectations from the updated KRA-gamma

The expected new full sky ν SED in comparison with IceCube

 π_0 neutrino best fit and the new expectations from MIN and MAX models suggest that the Fermi-LAT spatial template can agree with diffuse γ -ray and ν observations only if an hardening of the CR toward the Galactic center is assumed ($D \propto E^{\delta(R)}$).

ÍNFŃ

Template fitting of the new KRA- γ with ANTARES

The good acceptance of ANTARES experiment for the central part of our Galaxy, makes is answer a crucial probe of the neutrino flux arriving for this region of the sky.

Comparison with ANTARES ridge observation

IceCube analysis with starting tracks 2008-2018

Starting track events IceCube analysis compatible with Cascade analysis, however any significant excess visible, KRA- γ with 50 PeV cutoff quite constrained.

ÍNFŃ

The central molecular zone

With the incoming KM3NeT telescope, can this extended region solve the puzzle diffuse + unresolved sources ?

Considering unresolved source contribution

Depending on the model, the HGPS sample accounts for (68–87)% of the emission of the population in the scanned region. This suggests that unresolved sources represent a critical component of the diffuse emission measurable in the HGPS. This extra component is taken into account to tune the Min and Max diffuse models. <u>Unresolved source component strongly dependent from the energy considered and from the experiment used.</u>

Search for possible known Galactic ν sources

Possible unresolved Galactic ν sources

As showed in this work the actual ν telescopes and the incoming ones have a limited capabilities to resolve the known neutrino point-like populations, pointing to a possible additional quasi diffuse ν flux. However we don't know the amount hadronic production still associated to the position of these sources.

