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MACHINE LEARNING!!
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Take home points....

We present a first proof of concept demonstrating that deep learning methods can
estimate the dark matter distribution around galaxies directly from the photometric
images and HI datacubes.

Traditional rotation curves methods ARE NOT TESTED within a controlled
environment and WERE NOT PROBED to recover the real dark matter distribution.

Traditional rotation curves methods relies on several assumptions (circular
velocities, functional form of the DM profile) that may not be fulfill in real galaxies
and may introduce biases on the final results.

Our reconstruction of the DM distribution is completely data-driven, and does not
need any assumption on the shape nor the functional form of the DM profile and
does not rely on any physical assumptions regarding the dynamical state of the
system.



Nice, but....

e Our method relies on how realistic are the synthetic images and on what the
machine are learning. So....

e We have to trust on the cosmological hydrodynamical simulation (subgrid physics,
underlying cosmology, resolution, DM model, etc...)
o Analyse different simulations.

e We have to trust on the codes for creating the images from the simulated galaxies
(SKIRT, MARTINI).
o Transfer learning? Domain adaptation? Adversarial networks?

e We have to trust on what the machines are saying to us.
o Analyse interpretability methods.
o Check that we are not “prior” dominated.



THANK YOU



