Rome Samanta SSM and INFN Napoli

Dark matter production in the Early Universe

Interaction Lagrangian

Simplest: The mass term, MNN

Cosmological background

Simplest: radiation

Rome Samanta SSM and INFN Napoli

Dark matter production in the Early Universe

Interaction Lagrangian

Simplest: The mass term, MNN

Cosmological background

Simplest: radiation

Exotic (but acceptable)

Presence of primordial black holes : DM production via Hawking radiation

Rome Samanta SSM and INFN Napoli

Dark matter production in the Early Universe

Interaction Lagrangian

Cosmological background

Simplest: The mass term, M N N

Exotic (but acceptable)

Simplest: radiation

Presence of primordial black holes : DM production via Hawking radiation

Samanta et al, JCAP,2022

Rome Samanta SSM and INFN Napoli

Dark matter production in the Early Universe

Interaction Lagrangian

 10^{-2}

EXCLUDED

1022

 $\Omega_{\rm DM} h^2$

1024

10²⁰¹

 10^{-10}

M_{DM} [GeV]

Simplest: The mass term, MNN

 $M_{\rm DM} > Mpl$ $\Lambda_{\rm CS} > 10^{15} \, {\rm GeV}$ $M_{\rm DM} > T_{\rm BH}$

DM<T.

EXCLUDED (Ly α)

1026

M_{BH} [GeV]

*М*_{ВН} [g] 10²

104

1028

106

1030

Cosmological background

Simplest: radiation

Exotic (but acceptable)

Presence of primordial black holes : DM production via Hawking radiation

Signatures?

11 November 2024, Dark Matter and Cosmic Rays workshop, Napoli, Italy

1032

Rome Samanta SSM and INFN Napoli

GWs relating to ultralight primordial black holes

Graviton emission, Merger formation

High frequency GWs

See e.g., 2211.15726

PBH formation, PBH density fluctuation

Detectable, e.g., at LISA, But strongly dependent on large initial abundance of PBHs

 $\beta \equiv \frac{\rho_{BH}(t_{Bf})}{\rho_{\rm R}(t_{Bf})}$

Rome Samanta SSM and INFN Napoli

Work with

th $\beta \equiv rac{
ho_{BH}(t_{Bf})}{
ho_{
m R}(t_{Bf})}$ so that the PBHs dominate the energy density

The scenario

Lagrangian Simplest: The mass term, MNN Cosmological background

Exotic: PBH domination

Make the mass term dynamic (M= f*v) with a gauged U(1): One can find motivation from GUT Get cosmic strings: radiate GWs with amplitude μ=v^2

Rome Samanta SSM and INFN Napoli

Work with

 $\beta \equiv rac{
ho_{BH}(t_{Bf})}{
ho_{
m R}(t_{Bf})}$ so that the PBHs dominate the energy density

The scenario

Lagrangian Simplest: The mass term, MNN

Make the mass term dynamic (M= f^*v) with a gauged U(1): One can find motivation from GUT Get cosmic strings: radiate GWs with amplitude $\mu=v^2$ Cosmological background

Exotic: PBH domination

Y. Cui et al, 2019

Rome Samanta SSM and INFN Napoli

Scuola Superiore Meridionale

Work with $\beta \equiv rac{
ho_{BH}(t_{Bf})}{
ho_{
m R}(t_{Bf})}$ so that the PBHs dominate the energy density

The scenario

Lagrangian

Simplest: The mass term, MNN

Cosmological background

Exotic: PBH domination

Correct relic of super heavy DM

$$f_* \simeq 2.1 \times 10^{-8} \sqrt{\frac{50}{z_{\rm eq} \alpha \Gamma G \mu}} \left(\frac{M_{DM}}{T_0}\right)^{3/5} T_0^{-2/5} t_0^{-1}$$

Rome Samanta SSM and INFN Napoli

Samanta et al, Arxiv: 2409.03498

Rome Samanta SSM and INFN Napoli

Rome Samanta SSM and INFN Napoli

Conclusion

PBH seeded Super heavy DM model can fit the PTA data very well

It predicts a broken scale invariant GW spectrum at LISA/DECIGO band

Automatically evades LIGO-O3 bound on GWs

Can be tested with the next LIGO run

Could be improved by adding interaction terms to constrain lifetime: robust prediction for cosmic ray searches