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• Well separated peak, but…

• Heisenberg uncertainty
broadens the distribution, now
hidden under background

• Some final states work, but
suppressed

Needs new tech, problem solved if
~ unbound tritium
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We need a kick!

2

Cosmic rays upscatter the relic neutrinos

most upscattered by UHECR! 3

σ 𝐶𝑅 − ν ∝ 𝐸𝐶𝑅

3. Hara, Sato (1980-1981)
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Where are UHECR produced?
Fang, Murase (2017, Nature Phys.) 
1704.00015:

• Look at galaxy clusters
• AGN jets inject UHE particles in the 

cluster (𝑑Φ
𝑑𝐸

∼ 𝐸−α, α ∈ 2, 2.5 )
• Clusters have 𝐵 ∼ 𝜇G magnetic fields

• UHECRs spend 𝜏𝑒𝑠𝑐 ∼ Gyr in the cluster 

before escaping

A lot of time to upscatter neutrinos!



Flux from Cosmic Reservoirs

• Improves previous bounds 
by orders of magnitude4,5

• Overdensities only on cluster 
scale, not diffuse

• Can tell apart from 
Cosmogenic neutrinos: 

• Spectral shape (DIS is crucial)

• Flavour composition

4
4. Ciscar-Monsalvatje, Herrera, Shoemaker 2402.00985
5. Franklin, Martinez-Soler, Perez-Gonzalez, Turner 2404.02202



Flavour composition
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νs are non-relativistic ⇒ σ depends on 𝑚ν

We computed the flux of mass eigenstates ν𝑖, 
preserved during propagation

At detection, the flux of flavour eigenstate να is

𝑑Φα

𝑑𝐸ν
=෍

𝑖
𝑈α𝑖

2
𝑑Φ𝑖

𝑑𝐸ν



Flavour composition
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• Higher neutrino mass: 
degenerate neutrinos, 1:1:1 
flavour ratio

• Lower neutrino mass: the 
heaviest neutrino(s) dictate
the flavour composition

• NO/IO: less/more electron 
neutrinos



Do these overdensities make sense?

• Limit to overdensity in SM: Pauli 
blocking, needs BSM

• Smirnov, Xu 2201.00939        
get close with new Yukawa       
interaction

• Limit on mass of the cluster: 
alleviated by non-homogeneous
distribution

7



Conclusions

• We implemented a corrected cross section and CR composition and 
showed this has orders of magnitude impact wrt to the literature

• We set the most stringent bound on ην (can be even stronger with correct
normalization of CR flux and non homogeneous distribution)

• We provided two ways to disentangle this signal from others (cosmogenic): 

• Energy dependence (correct cross section including DIS is crucial)

• Flavour composition, which depends on absolute neutrino masses

8



What else?

• BSM mechanisms that induce neutrino overdensities? ν self-interactions? 
ν-DM interactions?

• Improved modeling of CR diffusion in the reservoir? Very naive treatment
• Hadronic resonances: the most important region to set the limit is also the 

most complex and not modeled in our analysis
• Other environments?
• What if the target is not the RvB? Upscattering DM

9



Thank you for your attention!
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Backup slides
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Effective distance𝐷eff
A measure of the effective distance traveled by Cosmic Rays 
through an equivalent homogeneous environment

𝐷𝑒𝑓𝑓 = ℬ𝑐τ𝑒𝑠𝑐

where

ℬ = න𝑑3 Ԧ𝑟 𝑓𝐶𝑅 Ԧ𝑟
η Ԧ𝑟

തη
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Energy dependence of  τ𝑒𝑠𝑐

13

Trapping time τ𝑒𝑠𝑐 depends on the energy E of the particle and on 
the magnetic field B as6

τ𝑒𝑠𝑐 ∼ 1 Gyr ×{ Τ𝑍𝑒𝐵 𝐸 Τ1 3

Τ𝑍𝑒𝐵 𝐸 2

if Τ𝑍𝑒𝐵 𝐸 < 𝑙𝑐

if Τ𝑍𝑒𝐵 𝐸 > 𝑙𝑐

6. Condorelli, Biteau, Adam 2309.04380



Pauli blocking

νs with momentum higher than 𝑝esc = 𝑚ν𝑣esc are not gravitationally
bound to the cluster. There are therefore

𝑁 =
1

8

4π

3
𝑝esc
3

𝑉

π3

available states. NFW profile, compute 𝑣esc 𝑟 =
2𝐺𝑀 <𝑟

𝑟
, thus η 𝑟

and average it. 

Allowed overdensity scales as 𝑚ν
3 and as 𝑀vir

7

147. Ringwald, Wong (2004) hep-ph/0408241



Cluster mass limit

NFW: 
𝑀vir ∝ 𝑟vir

3

so average density is (almost) the same for all halos, തρhalo

We impose 

തην𝑛ν
0σ𝑖𝑚𝑖 < തρhalo

15



Cosmic-Rays composition

16
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