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Relic neutrino Background (RvB): status

Not observed yet! v, + "H - *Het +e"
Direct detection via capture on tritium (PTOLEMY)"2: °H—- °He'+e™ +7,

* Well separated peak, but...
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-- CNB, final bound *He™ CNB, *H unbound ® H e i S e n b e rg u n C e rta i nty
broadens the distribution, now
hidden under background

e Some final states work, but
suppressed

Needs new tech, problem solved if
~ unbound tritium
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We need a kick!

Cosmic rays upscatter the relic neutrinos
G(CR — V) X ECR
most upscattered by UHECR! 3
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Let’s look at the (possible) source

Where are UHECR produced?
Fang, Murase (2017, Nature Phys.)
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Let’s look at the (possible) source

Where are UHECR produced?
Fang, Murase (2017, Nature Phys.)
1704.00015:

* Look at galaxy clusters
* AGN jetsinject UHE particles in the

cluster (% ~E™% a €2, 2.5])
* Clusters have B ~ uG magnetic fields

* UHECRs spend 7., ~ Gyr inthe cluster
before escaping

A lot of time to upscatter neutrinos!




Flux from Cosmic Reservoirs
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* Improves previous bounds
by orders of magnitude®>°

* Overdensities only on cluster
scale, not diffuse
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* Spectral shape (DIS is crucial)

* Flavour composition

4. Ciscar-Monsalvatje, Herrera, Shoemaker 2402.00985
5. Franklin, Martinez-Soler, Perez-Gonzalez, Turner 2404.02202



Flavour composition

Vs are non-relativistic = o depends onm,

We computed the flux of mass eigenstates v;,
preserved during propagation

At detection, the flux of flavour eigenstate v is

dd, L dd,
= 1Vl
dE, ; dE,




Flavour composition

* Higher neutrino mass:
degenerate neutrinos, 1:1:1
flavour ratio

e Lower neutrino mass: the
heaviest neutrino(s) dictate
the flavour composition

e NO/IO: less/more electron
neutrinos




Do these overdensities make sense?

* Limit to overdensity in SM: Pauli
blocking, needs BSM

o O O
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IceCube 2018

* Smirnov, Xu 2201.00939
get close with new Yukawa
Interaction

PUEO (2025)
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* Limit on mass of the cluster:
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Conclusions

* We implemented a corrected cross section and CR composition and
showed this has orders of magnitude impact wrt to the literature

* We set the most stringent bound on n,, (can be even stronger with correct
normalization of CR flux and non homogeneous distribution)

* We provided two ways to disentangle this signal from others (cosmogenic):
* Energy dependence (correct cross section including DIS is crucial)

* Flavour composition, which depends on absolute neutrino masses



What else?

* BSM mechanisms that induce neutrino overdensities? v self-interactions?
v-DM interactions?

* Improved modeling of CR diffusion in the reservoir? Very naive treatment

* Hadronic resonances: the most important region to set the limitis also the
most complex and not modeled in our analysis

* Other environments?
* What if the target is not the RvB? Upscattering DM



Thank you for your attention!
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Backup slides
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Effective distance D .¢f

A measure of the effective distance traveled by Cosmic Rays
through an equivalent homogeneous environment

Deff — BCTeSC

where
n(7r)

B = fdg? fCR(F)?
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Energy dependence of T,

Trapping time 1, depends on the energy E of the particle and on
the magnetic field B as®

—— constant T =2Gyr
B=1pG
— B=5uG
.| =—— B=10pG
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Pauli blocking

vs with momentum higher than p.s. = M, Ve are not gravitationally
bound to the cluster. There are therefore

1/4m 2 4
N=§ ?pesc %

available states. NFW profile, compute ves (1) = \/

2GM(<r)
r

, thus n(r)
and average it.

Allowed overdensity scales as mﬁ and as M.’

7. Ringwald, Wong (2004) hep-ph/0408241 14



Cluster mass limit

NFW:
Myir X T,

so average density is (almost) the same for all halos, pya1o

We impose

ﬁvn\(}) Zimi < ﬁhalo
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Cosmic-Rays composition

D<AK22
23<A<38
— A>39

19.0
logio(E/eV)

19.5
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