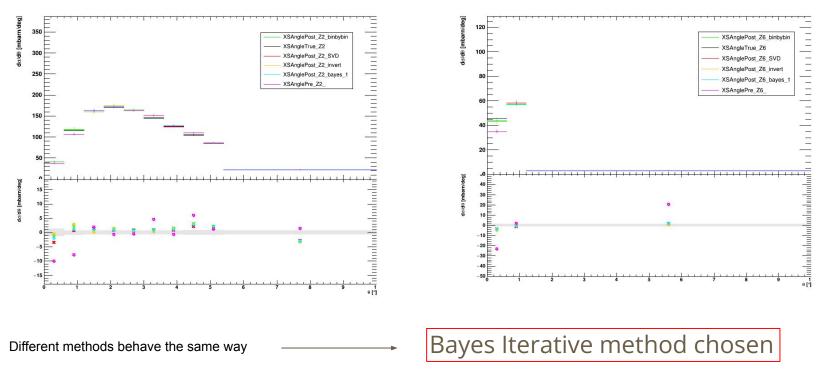
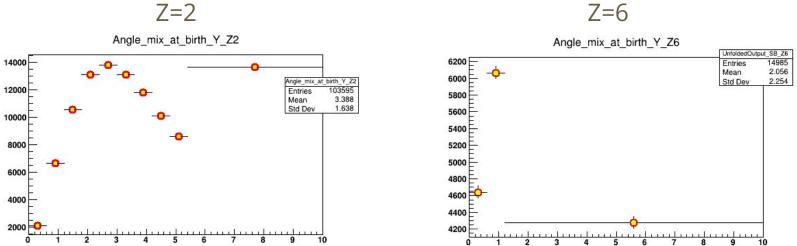
Unfolding Validation Tests

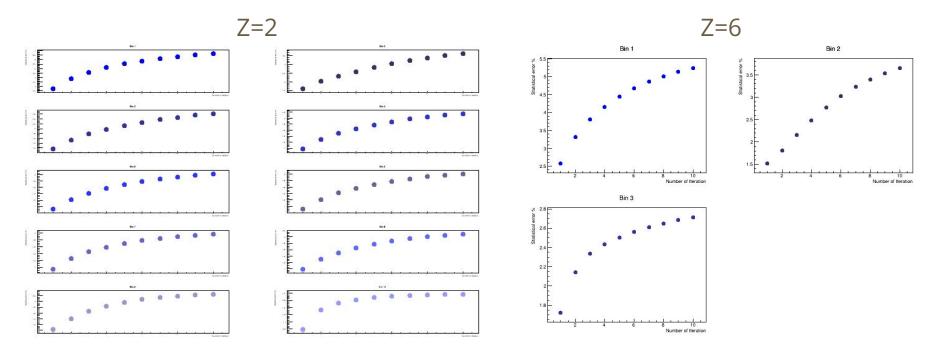

FOOT physics meeting 21/05/2024 —

Alberto Mengarelli INFN BO Riccardo Ridolfi UniBO & INFN

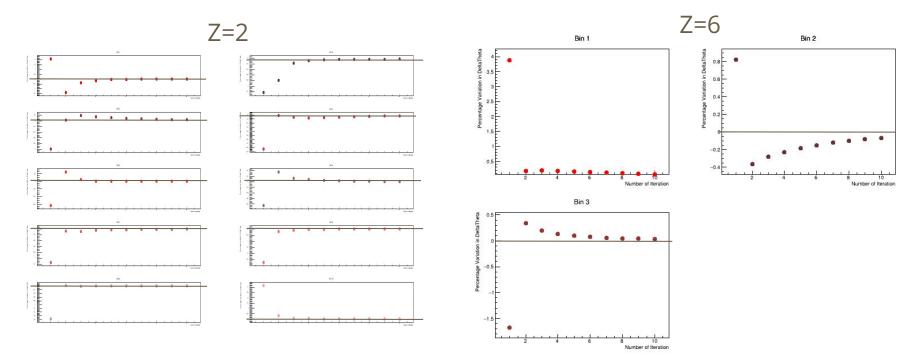
Unfolding Method Comparison


Z=6

Z=2


Closure test

First trivial check to perform as starting point: unfolding the same input distribution used to construct the response matrix etc..This must give a perfect closure.


Studies on the number of iterations: Statistical uncertainty

The degree of convergence of the iterative procedure is checked by comparing each iteration to the previous one. In particular, the parameters taken into account are the bin-wise statistical error (it increases with the number of iterations, reaching a sort of plateau)

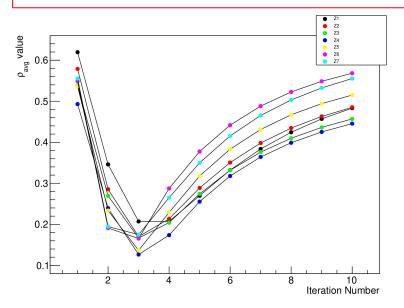
Studies on the number of iterations: bin residuals

bin-wise residuals (the bin-by-bin difference between the unfolded distribution at the *i*-th iteration and the unfolded distribution at the i - 1-th iteration, which must converge to 0).

Studies on the number of iterations: Average correlation

An optimal choice of the regularization parameter is the one that minimizes the average correlation factor:

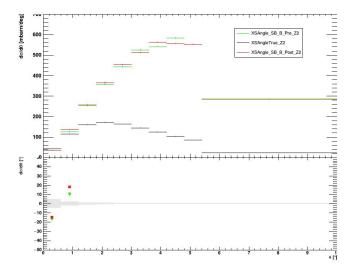
$$\rho_{\text{avg}} = \frac{1}{M_x} \sum_{j=1}^{M_x} \rho_j.$$

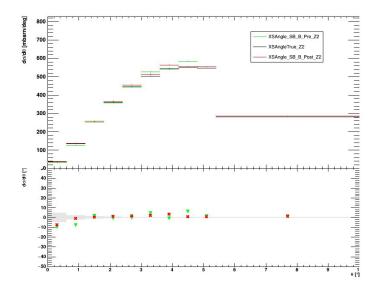

where ρ_{j} global correlation coefficient of bin j is defined as

$$\rho_j = \sqrt{1 - ((V_{xx})_{jj} (V_{xx}^{-1})_{jj})^{-1}}$$

 M_x : ndof ; V_{xx} : Cov. matrix

$$\rho_{\text{avg}} = \frac{1}{N_{\text{bins}}} \sum_{i=1}^{N_{\text{bins}}} \rho_i \qquad \rho_i = \sqrt{1 - \left[C_{ii} \left(C^{-1}\right)_{ii}\right]^{-1}}.$$


S. Schmitt, Data Unfolding Methods in High Energy Physics, EPJ Web Conf. 137 (2017) 11008, ed. by Y. Foka, N. Brambilla and V. Kovalenko, arXiv: 1611.01927



Due to the specific choice of the Monte Carlo sample for the training of the unfolding, it is necessary to check whether this choice could introduce a bias via the unfolding. To do this check the MC reweighting is required, in order to change the shapes of the distributions and get a varied distribution used as pseudo-data.

Only pseudo-data reweighted

Both pseudo-data and truth reweighted

Summary & next steps

- Standard sanity check on the unfolding machinery has been presented
- No unexpected behavior of the machinery has been found
- Performing checks on the dependence of different figures of merit on the number of iterations, 3 iterations could be chosen as the optimal value for **iterative bayesian unfolding**

...About systematics of the unfolding method

- "External": difference compared to an alternative method
- "Internal": difference between using 3 iteration and 4

expected to be at subpercent level

Table 1. Data tests performed on various unfolding methods.

	Yunf	$\chi^2_A/N_{\rm d.f.}$	$\operatorname{Prob}(\chi^2_A, N_{\mathrm{d.f.}})$
expectation	4584	N _{d.f.} / N _{d.f.}	0.5
bin-by-bin	4521	34.7/0	n.a.
matrix inversion	4584	0/0	n.a.
template fit	4572	12.0/16	0.74
constrained template fit	4584	12.0/16	0.74
Tikhonov $\tau = 0.0068$	4584	13.4/16	0.64
Tikhonov $\tau = 0.012$	4584	15.0/16	0.52
EM method $n = 0$	4537	5069/0	n.a.
EM method $n = 20$	4585	5.9/0	n.a.
EM method $n = 100$	4584	4.2/0	n.a.
EM method $n = 1000$	4584	3.9/0	n.a.
IDS $n = 1$	4584	76.8/0	n.a.
IDS $n = 3$	4584	26.1/0	n.a.
IDS $n = 10$	4584	8.0/0	n.a.
IDS $n = 30$	4584	4.9/0	n.a.

