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* IMRT: Intensity Modulated Radiation Therapy

— Photons!

— Complex treatments with steep dose gradients
 Different irradiation angles
* Multi Leaf Collimators (MLC)
» Fluence modulation of incident beam

— Better coverage of tumor while sparing healthy tissues and organs

— Gantry is static during irradiation
* “Next Step”: Volumetric Arc Therapy (VMAT), continuous gantry rotation
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Elekta Synergy® Linac with
Elekta Agility MLC

Wolfgang Schlegel, Thomas Bortfeld, Anca L Grosu, Tinsu Pan, and Dershan Luo. New technologies in radiation oncology. Journal of Nuclear Medicine, 2008
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Pre-treatment vs in-vivo dosimetry

MOUNCHEN

Pre-treatment verification

Potential errors:

» Dose miscalculation (TPS beam model)

* Machine related errors:
* Data transfer miscommunication
« Beam flatness, symmetry, intensity rate
* MLC malfunctioning, collimator, gantry...

In-vivo dosimetry

Potential errors:

« Same as in pre-treatment verification (but
during treatment)

* Discrepancies in patient geometry
* Positioning errors
» Anatomical changes (targets, OARS)
» Bolus material...

Different methods are well established
in clinical routine (EPID)

Used in (some) clinics (EPID), but
not well established in general

0 —
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« Point detectors at patient skin
— Time consuming (evaluation), point dose values
* Point detectos inserted in target/OARs
— Time consuming, invasive, uncertainty (positioning, changes in anatomy)
* Film dosimetry
— Surface dose, 2D
« EPID!

Contents lists available at ScienceDirect

Physics and Imaging in Radiation Oncology

_ I n—air acq u iSitionS F-IF]FR journal homepage: www.elsevier.com/locate/phro
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» Electronic Portal Imaging Device
— Amorphous silicon (a-Si) EPID

« 2D panel detector installed in most clinical linear
accelerators

» Primarily developed for patient positioning verification
— Sime signal reaches the EPID! Dose information?

* Interesting dosimetric properties
— Investigation of their use for dose measurements

Sub-millimeter spatial resolution
Temporal resolution in the order of ms
Approximated linear response to radiation

Digital and real time readout
Large sensitive area
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Flat panel detector

Scintillation layer connected to a pixelated photodiode array based on amorphous silicon
(a-Si) semiconductors

1-mm thick copper build-up plate placed on top of the scintillator
All enclosed in a low-density plastic cover and connected to a read-out system

EPID Model (Elekta iView PelkinElmer XRD
GT™) 1640

Scintillator screen Csl
Pixel number 1024 x 1024
Active area (cm?) 41 x 41
Pixel size (mm) 0.4
Max. frame rate (fps) 3.5
SSD (cm) 160

Max. Field size (cm?) 25 x 25
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An optimal methodology for in-vivo dosimetry should be accurate and
fast, providing reliable estimates of the three-dimensional dose delivered

to the patient within seconds, and should not increase the workload on
the clinical staff.

» Possible solution: EPID-based 3D in-vivo dosimetry exploring the benefits
from both Monte Carlo methods (accuracy) and Deep Convolutional Neural
Networks (efficiency)
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Intensity Modulated Radiation Therapy (IMRT)
— Complex treatments with steep dose gradients
— Better coverage of tumor while sparing healthy tissues and organs

EPID-based 3D in-vivo dosimetry exploring the benefits from both Monte Carlo

methods (accuracy) and Deep Convolutional Neural Networks (efficiency)
— Deep Dose Estimation (DDE)?!

Train the DDE to predict the dose distribution inside the patient
— Input: patient CT and first-order dose approximation (FOD), reconstructed from EPID signal
— Target: MC-simulated dose distribution
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« Originaly developed to predict patient-specific dose distribution for radiological Computed
Tomography (CT) acquisition
— Input:
« Patient CT image
+ 3D dose approximation (First-order dose approximation — FOD)
— Target:
* MC simulated dose distributions

« Extend the DDE to radiotherapy as a potential method for EPID-based in vivo dosimetry
— Input:
» Patient CT image
» 3D First-order Dose Approximation (FOD) (reconstructed from 2D EPID signals)
— Target: MC simulated dose distributions from step-and-shoot prostate IMRT plans
* Accurate Dose Distribution (ADD)
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Trained

DDE
Input Prediction
Qua!ity of Pre_diction depends on Accurate and reliable Monte
quality of the input data used for Carlo Model of the clinical LINAC
training the network
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In-house validated Geant4 MC model of a clinical linear accelerator*

collimator

; ; Flattening filter

I (onization chamber
I Backscatter plate

3D First-order dose approximation (FOD)

-2
T
FODd (Gy) = Dw,d- ( d ) . e(ﬂw,E-L)
TEPID

3D Accurate Dose
Distribution (ADD)

L = Radiological path length

2D EPID signal
(transmitted/attenuated)

ility ™
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« 2 prostate IMRT clinical plans
— 125 control points (CP) Training set: 67 pts. (469

: . : o : fields)
— All fields at simulated with gantry at 0° (antero-posterior
_ _ ganty ( P ) Test set: 16 pts. (112 fields)
« 83 patient pelvic CT scans

* Per patient: 3 unique fields (CP) + 4 linear combination
— 7 fields per patient, 581 fields in total
— 581 different ADD-FOD pairs

- Additional dataset simulated with gantry at 90" (“Lateral set”)
— 8 different patient CTs, 8 different fields - 8 ADD-FOD pairs
— Check the performance at different irradiation angles (left-right)
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DDE: modified 3D U-net? architecture.

256x256x96x2

CT Image
256Xx256x96X16
-’
16

128x128x48x32

32 32

64x64x24x64

64

-

500 Epochs

47 Hours (Nvidia Quadro
P5000 GPU)

Mean absolute percentage
error as loss function

% 3 x 3 x 3 Convolution, RelLU
¥ 2 x 2 x 2 Max Pooling

4 2 x 2 x 2 Upsampling
~~Depth concatenate
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After the training process:

« Evaluate the performance of the trained DDE in predicting dose distributions with
MC-like accuracy
— ADD vs DDEP (DDE predictions)

» Assess the improvement obtained with the DDE, with respect to the input
— FOD vs ADD

» Test set: evaluate the performance of the trained DDE to new, but similar, data

« Lateral set: new data from a different irradiation angle (unseen during training
process)
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« Quantitative method to compare two different dose distributions, widely
used in radiotherapy

— Reference distribution (RD) vs Evaluated distribution (ED)

e 2 criteria:
— Maximum dose difference (DD, 3%)
— Distance-to-agreement (DTA, 2 mm)
— DD and DTA define a region of interest (ROI)

Low D et al. A technigue for the quantitative evaluation of dose distributions. Medical Physics 1998.
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« Each voxel of the ED is compared to all voxels in the RD located inside the ROI,
the lowest I' is considered the best match:

|F€’U — Fref| Dev (Fefv) — Dref(Fref)
DD?

V(Frep) = min{ T (Frep, Tew) FV{Teu

« y value was multiplied by the sign of the dose difference between the evaluated
and reference voxels, to indicate an underdosage (y < 0) or oversosage (y > 0)

Mark Podesta, Lucas CGG Persoon, and Frank Verhaegen. A novel time dependent gamma evaluation function for dynamic 2d and 3d dose
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« Define a pass/fail criteria for every evaluated voxel

|)/(77ref)| < 1, evaluated voxel passes

ly(Frer)| > 1, evaluated voxel fails

» The passing rate (percentage of voxels passing the gamma evaluation) reflects
the agreement between evaluated and reference dose distributions
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Gamma passing rates for test set (0°)

« ADDvs FOD: =246 %
« ADD vs DDEP =297 %

Clear correlation to max. dose in ADD

* Linearly-combined plans

No correlation to mean CT number,
no special feature in patient CT
(ex. Gender, metal inserts, couch...)
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o
Gamma passing rates for lateral set (90°)
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Sagittal | Coronal

Green gamma values correspond to voxels passing the 3%, 2 mm criteria.
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Green gamma values correspond to voxels passing the 3%, 2 mm criteria.
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Test set O°

Dose (Gy)
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- Accounted for
in the DDEP!
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« Clear improvements on the y passing rates for the test set

— Trained DDE properly accouned for build-up and scatter effects, yielding dose
distributions comparable to the target ADD (MC)

— Trained network performed well in unseen data
» Not overfitted to training dataset

* For lateral set:
— DDEP approximates to ADD, but improvements are less pronounced
— Justified by the absence of simulations at 90° in the dataset used for training

— The performance of the DDE would certainly benefit from the inclusion of irradiation
from different directions and different anatomical regions in the training process.



|LubwiG-
MAXIMILIANS-
UNIVERSITAT
MONCHEN

 DDE clearly outperforms Monte Carlo simulations
« DDE training: 47 hours in an Nvidia Quadro P5000 GPU (“old” model)

DDE prediction:

= 0.6 s per field!

- Meaningful reduction on training and prediction time if implemented in newest
GPU models
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« ADD training targets are Monte Carlo simulations, simulated as dose-to-medium
distributions inside patient CTs

— Properly accounts for inhomogeneities in the volume

* Network learns how to map the FOD (dose-to-water) into dose-to-medium
— DDEPs are also given in dose to medium!

 Monte Carlo simulations: most time consuming part of the method
— Is accurate and independent
— Simulations with good statistics can take long (specially in CPUs...)

— Linac model should be accurate (geometric information not easily available)
— Possible solution: clinical TPS (corrections may apply)
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An optimal methodology for in-vivo dosimetry should be and
providing reliable estimates of the three-dimensional dose delivered to the patient
within seconds, and should on the clinical staff.

» After training (~47 hours), DDE predicts dose distributions within seconds —:3

« DDE predictions are comparable to target ADD: Monte-Carlo like @
accuracy

4,
* No increase on patient time-slot and workload on clinical staff (with N

respect to other in-vivo methods proposed)
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To improve results and extend the method: increase dataset!
— Different gantry angles
— Different anatomical regions
— Different treatment plans and beam energy

To potentially overcome the gap to clinical use: measured data

Usage of CBCT?
— Acquired right before patient treatment - towards real time in-vivo dosimetry!

DDE extended to RT, but originally for CT

— Potential to extend to dose estimation throughout the entire RT chain
— Risk assessment and late effects.
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