
Towards EPID-based 3D in-vivo Dosimetry 

for Modern Radiation Therapy

Dr. Juliana Martins
juliana.martins@physik.uni-muenchen.de

7th June, 2024



Modern Radiation Therapy?

• IMRT: Intensity Modulated Radiation Therapy
– Photons!

– Complex treatments with steep dose gradients

• Different irradiation angles

• Multi Leaf Collimators (MLC)

• Fluence modulation of incident beam

– Better coverage of tumor while sparing healthy tissues and organs 

– Gantry is static during irradiation 

• “Next Step”: Volumetric Arc Therapy (VMAT), continuous gantry rotation
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IMRT
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Elekta Synergy® Linac with

Elekta Agility MLC

MLC

Wolfgang Schlegel, Thomas Bortfeld, Anca L Grosu, Tinsu Pan, and Dershan Luo. New technologies in radiation oncology. Journal of Nuclear Medicine, 2008

Thomas Bortfeld, Wilfried Neve, Rupert Schmidt-Ullrich, and David E Wazer. Image-guided IMRT. Springer, 2006.



In-vivo Dosimetry

In vivo 

dosimetry

W. Schlegel, T. Bortfeld, A.-L. Grosu, 2006



Pre-treatment vs in-vivo dosimetry
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Potential errors:

• Same as in pre-treatment verification (but 

during treatment)

• Discrepancies in patient geometry

• Positioning errors

• Anatomical changes (targets, OARs)

• Bolus material…

In-vivo dosimetry

Different methods are well established 

in clinical routine (EPID)

Used in (some) clinics (EPID), but 

not well established in general

Potential errors:

• Dose miscalculation (TPS beam model)

• Machine related errors:

• Data transfer miscommunication

• Beam flatness, symmetry, intensity rate

• MLC malfunctioning, collimator, gantry…

Pre-treatment verification



In-vivo dosimetry: approaches

• Point detectors at patient skin

– Time consuming (evaluation), point dose values 

• Point detectos inserted in target/OARs

– Time consuming, invasive, uncertainty (positioning, changes in anatomy)

• Film dosimetry

– Surface dose, 2D

• EPID!

– In-air acquisitions

– Dose-in-water

– Corrections
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More 

information



EPID?

• Electronic Portal Imaging Device
– Amorphous silicon (a-Si) EPID

• 2D panel detector installed in most clinical linear 

accelerators

• Primarily developed for patient positioning verification
– Sime signal reaches the EPID! Dose information?

• Interesting dosimetric properties
– Investigation of their use for dose measurements
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EPID

Kirby, M. C., and A. G. Glendinning. "Developments in electronic portal imaging systems." The British journal of radiology 2006

Van Elmpt, Wouter, et al. "A literature review of electronic portal imaging for radiotherapy dosimetry." Radiotherapy and oncology 2008

• Sub-millimeter spatial resolution

• Temporal resolution in the order of ms

• Approximated linear response to radiation

• Digital and real time readout

• Large sensitive area



a-Si EPID

• Flat panel detector

• Scintillation layer connected to a pixelated photodiode array based on amorphous silicon     

(a-Si) semiconductors 

• 1-mm thick copper build-up plate placed on top of the scintillator

• All enclosed in a low-density plastic cover and connected to a read-out system

8Ross I Berbeco. Beam’s Eye View Imaging in Radiation Oncology. CRC Press, 2017

EPID Model (Elekta iView 

GTTM)

PelkinElmer XRD 

1640 

Scintillator screen CsI

Pixel number 1024 x 1024

Active area (cm2) 41 x 41

Pixel size (mm) 0.4

Max. frame rate (fps) 3.5

SSD (cm) 160

Max. Field size (cm2) 25 x 25



 Possible solution: EPID-based 3D in-vivo dosimetry exploring the benefits 

from both Monte Carlo methods (accuracy) and Deep Convolutional Neural 

Networks (efficiency)
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In-vivo dosimetry: requirements?

An optimal methodology for in-vivo dosimetry should be accurate and 

fast, providing reliable estimates of the three-dimensional dose delivered 

to the patient within seconds, and should not increase the workload on 

the clinical staff.



Motivation and Goal

• Intensity Modulated Radiation Therapy (IMRT)

– Complex treatments with steep dose gradients

– Better coverage of tumor while sparing healthy tissues and organs 

• EPID-based 3D in-vivo dosimetry exploring the benefits from both Monte Carlo 

methods (accuracy) and Deep Convolutional Neural Networks (efficiency)
– Deep Dose Estimation (DDE)1

• Train the DDE to predict the dose distribution inside the patient
– Input: patient CT and first-order dose approximation (FOD), reconstructed from EPID signal 

– Target: MC-simulated dose distribution

101 Maier, Joscha, et al. "Real-time patient-specific CT dose estimation using a deep convolutional neural network." 2018



DDE: Deep Dose Estimation

• Originaly developed to predict patient-specific dose distribution for radiological Computed
Tomography (CT) acquisition

– Input: 

• Patient CT image

• 3D dose approximation (First-order dose approximation – FOD)

– Target: 

• MC simulated dose distributions

• Extend the DDE to radiotherapy as a potential method for EPID-based in vivo dosimetry

– Input: 

• Patient CT image

• 3D First-order Dose Approximation (FOD) (reconstructed from 2D EPID signals)

– Target: MC simulated dose distributions from step-and-shoot prostate IMRT plans

• Accurate Dose Distribution (ADD)

111 Maier, Joscha, et al. "Real-time patient-specific CT dose estimation using a deep convolutional neural network." 2018



DDE to Radiotherapy

Trained 

DDE

Prediction

Quality of Prediction depends on 

quality of the input data used for 

training the network

Accurate and reliable Monte 

Carlo Model of the clinical LINAC

Input

+



Methods
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3D Accurate Dose 

Distribution (ADD)

2D EPID signal

(transmitted/attenuated)

𝐹𝑂𝐷𝑑 𝐺𝑦 = 𝐷𝑤,𝑑 .
𝑟𝑑

𝑟𝐸𝑃𝐼𝐷

−2

. 𝑒(𝜇𝑤,𝐸.𝐿)

𝐿 = 𝑅𝑎𝑑𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ

3D First-order dose approximation (FOD)

In-house validated Geant4 MC model of a clinical linear accelerator*

*Elekta Synergy® coupled to Elekta Agility™ multi-leaf collimator



Methods

• 2 prostate IMRT clinical plans

– 125 control points (CP)

– All fields at simulated with gantry at 0˚ (antero-posterior)

• 83 patient pelvic CT scans

• Per patient: 3 unique fields (CP) + 4 linear combination

– 7 fields per patient, 581 fields in total

– 581 different ADD-FOD pairs

• Additional dataset simulated with gantry at 90˚ (“Lateral set”)

– 8 different patient CTs, 8 different fields  8 ADD-FOD pairs

– Check the performance at different irradiation angles (left-right)

14

Training set: 67 pts. (469 

fields)

Test set: 16 pts. (112 fields)



Methods
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• 500 Epochs

• 47 Hours (Nvidia Quadro 

P5000 GPU)

• Mean absolute percentage 

error as loss function

2O. Ronneberger, et al. “U-Net: Convolutional Networks for Biomedical Image Segmentation”, 2015.

DDE: modified 3D U-net2 architecture. 



After the training process:

• Evaluate the performance of the trained DDE in predicting dose distributions with 
MC-like accuracy

– ADD vs DDEP (DDE predictions)

• Assess the improvement obtained with the DDE, with respect to the input 
– FOD vs ADD

• Test set: evaluate the performance of the trained DDE to new, but similar, data

• Lateral set: new data from a different irradiation angle (unseen during training 
process)
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Evaluation



• Quantitative method to compare two different dose distributions, widely 

used in radiotherapy

– Reference distribution (RD) vs Evaluated distribution (ED)

• 2 criteria:

– Maximum dose difference (DD, 3%)

– Distance-to-agreement (DTA, 2 mm)

– DD and DTA define a region of interest (ROI)
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Gamma Index Evaluation

Low D et al. A technique for the quantitative evaluation of dose distributions. Medical Physics 1998.



• Each voxel of the ED is compared to all voxels in the RD located inside the ROI, 

the lowest Γ is considered the best match:

• 𝛾 value was multiplied by the sign of the dose difference between the evaluated 

and reference voxels, to indicate an underdosage (𝛾 < 0) or oversosage (𝛾 > 0) 
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Gamma Index Evaluation

Mark Podesta, Lucas CGG Persoon, and Frank Verhaegen. A novel time dependent gamma evaluation function for dynamic 2d and 3d dose 

distributions. Physics in Medicine & Biology 2014.
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Gamma Index Evaluation

𝛾  𝑟𝑟𝑒𝑓 ≤ 1, 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 𝑣𝑜𝑥𝑒𝑙 𝑝𝑎𝑠𝑠𝑒𝑠

𝛾  𝑟𝑟𝑒𝑓 > 1, 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 𝑣𝑜𝑥𝑒𝑙 𝑓𝑎𝑖𝑙𝑠

• Define a pass/fail criteria for every evaluated voxel

• The passing rate (percentage of voxels passing the gamma evaluation) reflects 

the agreement between evaluated and reference dose distributions



Results and Discussions
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Gamma passing rates for test set (0˚)
• ADD vs FOD: ≥ 46 %

• ADD vs DDEP ≥ 97 %

Clear correlation to max. dose in ADD

• Linearly-combined plans

No correlation to mean CT number, 

no special feature in patient CT 

(ex. Gender, metal inserts, couch…)

Field



Results and Discussions
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Gamma passing rates for lateral set (90˚)
• ADD vs FOD ≥ 88 %

• ADD vs DDEP: ≥ 95 %

Clear correlation to max. dose in ADD

No correlation to mean CT number, 

no special feature in patient CT 

(ex. Gender, metal inserts, couch…)

Field



Results and Discussions

22Green gamma values correspond to voxels passing the 3%, 2 mm criteria.



Results and Discussions

23Green gamma values correspond to voxels passing the 3%, 2 mm criteria.



Results and Discussions

24

FOD does not consider build-up effect and 

scattering (but well described by Monte Carlo)
𝐹𝑂𝐷𝑑 𝐺𝑦 = 𝐷𝑤,𝑑 .

𝑟𝑑
𝑟𝐸𝑃𝐼𝐷

−2

. 𝑒(𝜇𝑤,𝐸.𝐿)

Test set 0˚ Lateral set 90˚

 Not correctly 

accounted for  

 Accounted for 

in the DDEP!



• Clear improvements on the 𝛾 passing rates for the test set

– Trained DDE properly accouned for build-up and scatter effects, yielding dose 

distributions comparable to the target ADD (MC)

– Trained network performed well in unseen data

• Not overfitted to training dataset

• For lateral set: 

– DDEP approximates to ADD, but improvements are less pronounced 

– Justified by the absence of simulations at 90˚ in the dataset used for training

– The performance of the DDE would certainly benefit from the inclusion of irradiation 

from different directions and different anatomical regions in the training process.
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Results and Discussions



Results and Discussions: Time

• DDE clearly outperforms Monte Carlo simulations

• DDE training: 47 hours in an Nvidia Quadro P5000 GPU (“old” model)
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DDE prediction: 

≈ 0.6 s per field!

MC dose 

distribution: 

≈ 14 h per field

 Meaningful reduction on training and prediction time if implemented in newest 

GPU models 



• ADD training targets are Monte Carlo simulations, simulated as dose-to-medium 

distributions inside patient CTs

– Properly accounts for inhomogeneities in the volume

• Network learns how to map the FOD (dose-to-water) into dose-to-medium

– DDEPs are also given in dose to medium!

• Monte Carlo simulations: most time consuming part of the method

– Is accurate and independent 

– Simulations with good statistics can take long (specially in CPUs...)

– Linac model should be accurate (geometric information not easily available)

– Possible solution: clinical TPS (corrections may apply)
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Results and Discussions



Conclusions and outlook

• After training (~47 hours), DDE predicts dose distributions within seconds

• DDE predictions are comparable to target ADD: Monte-Carlo like 

accuracy 

• No increase on patient time-slot and workload on clinical staff (with 

respect to other in-vivo methods proposed)
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An optimal methodology for in-vivo dosimetry should be accurate and fast, 

providing reliable estimates of the three-dimensional dose delivered to the patient 

within seconds, and should not increase the workload on the clinical staff.



Conclusions and outlook

• To improve results and extend the method: increase dataset!
– Different gantry angles

– Different anatomical regions

– Different treatment plans and beam energy

• To potentially overcome the gap to clinical use: measured data

• Usage of CBCT?
– Acquired right before patient treatment  towards real time in-vivo dosimetry!

• DDE extended to RT, but originally for CT
– Potential to extend to dose estimation throughout the entire RT chain

– Risk assessment and late effects.
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