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Data exploration
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We collected one hundred pairs of EPID-PD images from various phantoms 
representing different material densities (lung, solid water, titanium, and bone), along 
with corresponding simulated dose images).

● Size: 1024x1024
● 16 bit
● Pixel spacing: [0.405, 

0.405] mm
● Grey-scale pixel value

● Size: 347x347
● Range: [0, ≈30]
● Pixel spacing: [1.0, 1.0] 

mm
● Gray dose pixel value 

[cGy]

L. Marini, 07 June 20244



Data preprocessing
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(1)
Matching of physical 

size

Do the images have the 
same dimensions?

(3)
Pixel scaling → 
normalization

It can help the training phase 
of the network

(2)
Image resizing

(256x256)

A trade-off between 
resolution and computing 

capacity
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1) Matching of physical size
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Do the images have the same dimensions?

● The spatial dimensions of the PDs differ from those of the EPIDs. 
● Additionally, the squares within the PDs appear slightly larger.
● Some background pixels may are missing, possibly due to being cut off by the TPS.
● To address this problem, we add background pixels, ensuring that both images have the same 

spatial dimensions.



2) Image resizing → (256x256)
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A trade-off between resolution and computing capacity

● Image resizing (using OpenCV, Python) refers to the scaling of images.
● Reduces the number of pixels, speeding up neural network training and reducing model 

complexity (Training efficiency).
● Lowers computational and memory requirements by decreasing image size.

256

256

https://www.geeksforgeeks.org/opencv-python-tutorial/


3) Pixel scaling
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It can help the training phase of the network
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● Normalization is the process of converting an actual range of values which a numerical pixel 
can take, into a standard range of values, typically in the interval [0, 1].

● Why do we normalize? It is not a strict requirement. However, in practice, it can lead to an 
increased speed of learning (Gradient descent, weight updates and numerical overflow)

EPID → EPID/216 PD → PD/100



Once the dataset is ready to be processed by the neural network for the 
training phase, we split it into three different set:

Data partition
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Validation set
(15%)

Training set
(70%)

Test set
(15%)



We developed a U-net architecture aiming at mapping EPID images into PD ones.
It is an image regression problem, i.e., a machine-learning technique that has the ability to 
predict continuous values within a specific range.
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Conv Block:
● Conv2D: Applies convolution with 3x3 filters and 'same' padding.
● BatchNormalization: Normalizes the activations of the previous layer to improve training 

stability.
● Activation: applies ReLU activation function to introduce non-linearity.
● SpatialDropout2D: Randomly drops spatial units to prevent overfitting.
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Unet parameters
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Input:
EPID image

Output
predicted PDUNet Architecture:

Downsampling: Successive conv_block and 
MaxPooling2D((2, 2)) layers to reduce spatial 
dimensions and extract features.

Bottleneck: Deepest part of the network with 
highest feature extraction (256 filters).

Upsampling: Conv2DTranspose layers to 
increase spatial dimensions, concatenating with 
corresponding downsampled layers for detailed 
reconstruction.

Output Layer:
Conv2D(1, (1, 1), activation='linear'): Generates 
the final output with a single channel using linear 
activation.
Resizing(256, 256): Resizes the output to a fixed 
dimension of 256x256.

Compilation: Compiles the model with Adam 
optimizer, mean squared error loss, and mean 
absolute error as a metric.



Predictions of the model
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EPID TPS Unet



Predictions of the model
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EPID TPS Unet



Predictions of the model
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EPID TPS Unet



Predictions of the model
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EPID TPS Unet



Predictions of the model
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EPID TPS Unet



Input: EPID image Output: predicted PD

Ground truth: real PD

VS

Gamma-index analysis
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A standard gamma analysis of 3%/3 mm was performed on the PD predicted by the DL 
network and the simulated PD in the test dataset, leading to a mean gamma pass rates 
of  (82.30 ± 4.80)%.



Gamma-index: worse and best cases
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Gamma-index: worse and best cases
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The reconstructed PDs 
show some horizontal 
patterns.
The causes need to be 
investigated…



Improvements
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Possible improvements:

● Dataset:
○ Correction of artefacts
○ Increase the data size

● Deep learning model
○ Data augmentation
○ Cross validation
○ Ensemble learning
○ Custom loss function



Data augmentation
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EPID

PD

Warning: it is important that each pair of epid-pd images is subject to the same geometric transformation



Cross validation & ensemble learning
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Dataset Augmented 
Dataset

Unet 1

Unet 2

Unet 3

Unet 4

Unet 5

Prediction 
of test set

Prediction 
of test set

Prediction 
of test set

Prediction 
of test set

Prediction 
of test set

Average 
prediction 
of test set

● CV is employed for training a neural network on an image dataset to ensure that the model 
is robust and generalizes well to unseen data.

● This technique evaluates the model's performance on different subsets of the dataset, 
reducing the risk of overfitting and providing a more reliable estimate of its ability to 
predict new images.
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Training phase
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Cross-validation Cross-valid + data aug Data aug + cross-valid + custom loss 



Pipeline of the analysis
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Predictions of the model
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EPID TPS Unet



Predictions of the model
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EPID TPS Unet



In this study, we converted the measured EPID response into the actual PD 
through a DL network and compared it with the simulated PD calculated by TPS.

A standard gamma analysis of 3%/3mm was performed on the PD predicted 
by the DL network and the simulated PD in the test dataset, leading to a mean 
gamma pass rates of  (82.30 ± 4.80)%.

Additional techniques, such as data augmentation, k-cross validation, and 
ensemble learning, do not produce significantly better results.

- We need to understand in which cases the network performs better and in 
which ones it performs worse.

- It is possible to use different types of architectures.
- Increase the size and variety of the dataset

Conclusions
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Thank you for the attention!
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Artifacts in the TPS images
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Predictions of the model
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Predictions of the model
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EPID

TPS DL model

15 May 2024

EPID TPS DL model


