

#### Deep learning-based 3D in vivo dose reconstruction with EPID for magnetic resonance-linear accelerators

#### Yongbao Li, PhD

Sun Yat-sen University Cancer Center Guangzhou, China 2024.06.07

#### Background

- MR-Linac
  - High soft-tissue contrast
  - No imaging dose
  - Imaging at different temporal scales
  - Functional imaging
- Adaptive radiotherapy
  - Online ART
  - Real-time ART
  - Biology guided ART



## **Online ART workflow**



# Patient specific quality assurance (QA) for MR-Linac

- Measurement based QA for reference plan (Used in clinic)
  - Reference plan is not delivered
  - Patient modeling and dose calculation is not included
- Independent dose check for adaptive plan (Used in clinic)
  - No delivery information is included
- EPID-based in vivo dosimetry (Desired in clinic)
  - End-to-end dose verification, including verification of patient geometry and setup, synthetic CT generation or density assignment, dose calculation from TPS, plan transfer and delivery
  - Real-time dose monitoring







## **Unity EPID**



SAD = 143.5 cmSDD = 263.5 cmScale factor = 1.84EPID size: 41 cm  $\times$  41 cm Dimension:  $1024 \times 1024$ Resolution:  $0.4 \text{ mm} \times 0.4 \text{ mm}$ Unattenuated region: [-11 cm, 11 cm] X: Y: [-4.8 cm, 4.8 cm]



Torres-Xirau I, Olaciregui-Ruiz I, van der Heide UA, Mans A. Two-dimensional EPID dosimetry for an MR-LINAC: Proof of concept. Med Phys. 2019;46:4193-4203.

## **Conventional in vivo dose reconstruction workflow**



- Back projection algorithm is not accurate for inhomogeneous region, magnetic field effect can not be considered
- Forward calculation with Monte Carlo has low efficiency, is challenged for real-time dose monitoring

## Accuracy of BP algorithm in low density region





**Fig. 4.** (a) TPS dose, (b) *in vivo* EPID dose and (c) γ distributions corresponding to the field delivered at gantry angle 0° of the liver plan with the worst agreement. The agreement worsens for the parts of the beam traversing low density lung tissue.

Olaciregui-Ruiz I, et al. Automatic dosimetric verification of online adapted plans on the Unity MR-Linac using 3D EPID dosimetry. Radiotherapy and Oncology, 2021, 157: 241-246.

## **Deep learning-based 3D in vivo dose reconstruction**



- No complex patient scatter modeling and commissioning step is needed
- All scatter effects, beam hardening effects, heterogeneity effects, and magnetic field-induced EREs were assumed to be captured by the CNN model

# **Deep learning-based 3D in vivo dose reconstruction**

Use Monte Carlo simulation to acquire 3D patient

Train & Validation dose and 2D portal dose simultaneously Density volume Density volume Portal dose Dataset generated with MC simulation Back-projection Back-projection Input Input Coarse dose Input Input Model 3DResUet Output Label Predicted dose MC dose Back projection to get coarse dose  $d^{ini}(u, v, r) = (e^{-\mu \hat{r}} - e^{-\beta \hat{r}}) / (e^{-\mu \hat{r}_{\text{EPID}}} - e^{-\beta \hat{r}_{\text{EPID}}}) \frac{r_{\text{EPID}}^2}{r^2} \varphi(u, v)$ 

i Test

Portal dose

Coarse dose

MC dose

Comparison

Dataset generated

with

MC

simulation

## **Monte Carlo simulation with magnetic field**

- gDPM —— developed by Xun Jia (JHU)
  - Based on fast MC code-DPM
  - GPU acceleration
  - Separate photon and electron transportation
  - ~60-80 times efficiency improvement with CPU version
- Extend charged particle transportation in magnetic field
  - First order approximation

$$\Delta \boldsymbol{u} = \frac{\boldsymbol{q} \cdot \boldsymbol{s}}{m_0 \gamma v_0^2} [\boldsymbol{v}_0 \times \boldsymbol{B}_0]$$
  
$$\boldsymbol{u}(\boldsymbol{s}) = \boldsymbol{u}_0 + \Delta \boldsymbol{u}$$
  
$$\boldsymbol{R} = \frac{m_0 \gamma v_0^2}{\boldsymbol{q} | \boldsymbol{v}_0 \times \boldsymbol{B}_0 |}$$
  
$$\delta = \frac{\boldsymbol{s}}{R} \ll 1$$
  
$$\Delta \boldsymbol{u} = \frac{\boldsymbol{s}}{R} \frac{\boldsymbol{u}_0 \times \widehat{\boldsymbol{B}}_0}{| \boldsymbol{u}_0 \times \widehat{\boldsymbol{B}}_0 |}$$
  
$$\boldsymbol{s} = \min(\boldsymbol{R} \cdot \delta, s_{vox}, s_{hard}, s_{ele})$$



Xun Jia, et al. Phys. Med. Biol. 2011.



FIG. 1. Simplified EGSnrc PRESTA-II step in the presence of a magnetic field. The particle is initially at  $\vec{x}_o$  with velocity  $\vec{v}(0)$ , it is then transported a step length, s, to  $\vec{x}_{CH}$  by the CH algorithm which samples direction of motion at an intermediate,  $\vec{v}(s/2)$ , and final,  $\vec{v}(s)$ .  $\Delta \vec{x}_B$  and  $\Delta \vec{u}_B$  are calculated using Eqs. (2) and (6) to obtain the final position,  $\vec{x}_f$ , and velocity,  $\vec{v}_f$ .

EGSnrc Manual.

Li et al. Med. Phys. 2021(48).

## Monte Carlo beam modeling for Unity with 1.5T





Li et al. Med. Phys. 2021(48).

## **Dataset and augmentation**



- Dataset
  - 21 brain cases, 46 NPC cases, 15 lung cases, 14 rectum cases
  - training and validation set (78 cases), test set (18 cases)
  - 576 original treatment beams
- Augmentation
  - rotate the original beam angles by  $10^{\circ}-15^{\circ}$  for 2–3 times
  - 1841 and 121 beams for training and validation
  - all volume dose and portal dose were recalculated for each beam

#### **Network structure**





## **Dose reconstruction result**





#### Table 1. Averaged $\gamma$ -pass rates and MAE parameters for 18 tested patients (mean $\pm$ SD).

| Site       |                    | Brian (4)        | nasopharynx (8)  | Lung(3)          | Rectum (3)   |
|------------|--------------------|------------------|------------------|------------------|--------------|
| γ-pass (%) | Dose > 0%, 3%/2 mm | 97.42 ± 2.66     | 98.53 ± 0.95     | 99.41 ± 0.46     | 98.63 ± 1.01 |
|            | Dose>20%, 3%/2 mm  | $95.48 \pm 3.31$ | $97.20 \pm 1.42$ | $95.35 \pm 0.57$ | 95.29 ± 2.89 |
|            | Dose>50%, 3%/2 mm  | $94.32 \pm 3.77$ | $95.10 \pm 2.01$ | $90.40 \pm 2.71$ | 95.83 ± 1.56 |
|            | Dose > 0%, 2%/2 mm | $94.02 \pm 6.21$ | $96.46 \pm 1.93$ | $98.72 \pm 0.88$ | 96.72 ± 1.73 |
| MAE (%)    | $0.82 \pm 0.36$    | $0.88\pm0.21$    | $0.41\pm0.19$    | $0.67\pm0.09$    |              |

#### **Dose reconstruction result**





#### **Dose reconstruction result**

![](_page_15_Figure_1.jpeg)

![](_page_15_Picture_2.jpeg)

## Conclusion

![](_page_16_Picture_1.jpeg)

- Proposed a CNN-based 3D in vivo dose reconstruction method
  - Physical processes were learned through accurate MC data-driven model training
  - Simplicity in dose reconstruction and model commission
  - Training data can be generated with clinic TPS by adding a virtual EPID structure

- Limitations
  - No validation was conducted for real measured EPID images
  - Field truncation by real EPID was not considered

![](_page_17_Picture_0.jpeg)

#### Thanks !