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Outline of the talk:

▪ Motivations

▪ Black holes in string theory and the fuzzball proposal

▪ Tools and techniques to test the conjecture: holography, shockwaves and 
                  computational methods



Evidences for the existence of black holes:

Experimentally, they confirm GR predictions. Theoretically, we know that this is not the 
ultimate description of black hole physics.



• Black holes are singular solutions of Einstein’s equations.

• No Hair Theorem: uniqueness of black hole solution for fixed macroscopic charges 
(mass M, charge Q and angular momentum J).

• Black holes obey thermodynamic laws: thermal equilibrium (T=surface gravity), 
conservation of energy and

𝑆𝐵𝐻 =
𝐴ℎ𝑜𝑟

4 𝐺𝑁
∆𝑆𝐵𝐻≥ 0

GR description:

But at this level, this is just an analogy… Black holes are 
black: does this temperature have a physical meaning?



• Statistical mechanics interpretation of BH entropy:

What/where are the BH microstates? How do they look like?

• Information paradox: Hawking evaporation can map a pure state into a mixed one

𝑆𝐵𝐻~log(#𝑚𝑖𝑐𝑟𝑜𝑠𝑡𝑎𝑡𝑒𝑠)

The process in not unitary!

Open questions in GR:

• Black holes are not black: they emit thermal radiation, due to pair production at the 
horizon

QFT in classical BH background:



Why is this a difficult problem?

The Page curve describes the evolution of Entanglement Entropy between an evaporating 
body and the radiation, if the evaporation process is unitary

Evaporation process described 
by Hawking

Hawking process valid until BH 
is Planck size, all information 
released at the end.

Page curve: valid for a 
unitary process.

We expect Quantum Gravity 
to shed light upon this issues, 
but it is not clear how…

Message:



• Black holes are bound states of N strings and D-branes (N>>1).

• Can we count microscopic degeneracy?

We consider BPS (supersymmetric) states: the degeneracy is protected by 

supersymmetry

                                We can extrapolate the degeneracy at strong coupling (BH regime) 

       from the one at weak coupling  (Strominger Vafa ‘96)

• String theory captures correctly the d.o.f. of black holes. This does not answer the 

question: How do individual microstates look like in the BH regime?

Black holes in string theory:



(Type IIB on 𝑅1,4 × 𝑆1 × 𝑇4: D1 branes wrap 𝑆1 and D5 branes wrap 𝑆1 × 𝑇4)

Let’s start in the F1-P frame (dual to D1-D5): a microstate is described by 8 functions 𝑔𝐴 
that define the profile of the oscillating string in the transverse directions

At strong coupling (in D1D5 frame)

The backreaction on spacetime is non-singular and horizonless

D1D5 system: 

(Lunin, Mathur, ‘01)



Fuzzball proposal:

For black hole microstates quantum gravity effects become important at the scale of the horizon, 
due to the size of the underlying bound state. 

The classical black hole solution is a coarse-grained description of the system.
It is accurate for some purposes, but not for  “fine grained” questions.  

Typical microstates are expected to be highly quantum. A subset of them are coherent states, 
solution of the supergravity e.o.m., that are low curvature, non-singular and horizonless.



• Supersymmetric D1-D5 BH: good understanding of all the microstates, but this black 
hole is microscopic…

• Supersymmetric D1-D5-P BH: two classes of solutions (superstrata and multicenter), 
but they are not enough to account for all the entropy

• Non-extremal BH: JMaRT solution, very atypical

State of the art:

This proposal is a conjecture, it is important to develop tools and techniques to 
test and corroborate it



• What are the holographic duals of the microstates we have constructed?
• Can we enforce the case of interpreting them as BH microstates? 
• Can the CFT intuition guide the construction of new microstate?

Holography:

Shockwaves:

Computational methods:

• Can we provide a coarse-grained description of the microstates, that still capture the overall physics?
• Are the microstates instable? Do instabilities drive them toward BH geometries?
• How do particles inside the “would be horizon” backreact on space-time?

• Given that constructing BH microstates is so difficult, can we exploit computer science tools to 
get physically relevant, numerical solutions?



In the near horizon limit, the geometry is 𝐴𝑑𝑆3 × 𝑆3

Holography

(Type IIB on 𝑅1,4 × 𝑆1 × 𝑇4: D1 branes wrap 𝑆1, D5 branes wrap 𝑆1 × 𝑇4 and 𝑆1possibly carries P)

Holography is applicable

Duality between spectrum (and dynamics) of string theory in an asymptotically AdS space and 
that of gauge invariant operators in the dual CFT.

In our case:

Duality
D1D5 CFT



D1D5 CFT:

Symmetries: Virasoro, (4,4) SUSY, 𝑆𝑈 2 𝐿 × 𝑆𝑈 2 𝑅 with R-symmetry

Free orbifold point: CFT is a sigma model with target space (𝑇4)𝑁/𝑆𝑁 
Field content: N copies of 4 free bosons and 4 free fermions             , r = 1,…,N 

Orbifold theory                 States are in correspondence with conjugacy classes of 𝑆𝑁 through 
    boundary conditions of the fields 

Boundary conditions:
𝑋(1) → 𝑋(1),  𝑋(2) → 𝑋(2),   𝑋(3) → 𝑋(3)

Boundary conditions:                         
𝑋(1) → 𝑋(2) → 𝑋(3) → 𝑋(1)

Twist operator: Σ𝑘 changes boundary conditions.



Gravity moduli space CFT moduli space

Orbifold point

Supergravity point

Strategy: gain insights on the gravity theory by studying the D1D5 CFT, but …

Focus on protected quantities (moduli independent): expectation 
values of chiral primary operators in 1/4 (1/8)-BPS states 

Limitations: 
i)  | ۧ𝑠  is characterized by expectation values of all the operators in the theory, not only 

chiral primaries… 
ii)  Expectation values of simple operators on a microstate are indistinguishable from 

thermal state up to 𝑂(𝑒−𝑁)



Precision holography dictionary:

Expectation values of chiral primary 
operators (and descendants) of 
dimension d

Terms of order 𝑟−2−𝑑 in the 
geometry expansion around the 
vacuum 𝐴𝑑𝑆3 𝑥 𝑆3

(Skenderis, Taylor, ’06/’07)

𝑠 𝑂𝑖
(𝑑)

𝑠 ∝ 𝑐𝑖 

| ۧ𝑠  is a CFT state dual to a microstate geometry, 𝑂𝑖
(𝑑)

 is the operator dual to the field 𝜙𝑖
(𝑑)

𝜙𝑖
(𝑑)

=
𝑐𝑖

𝑟2+𝑑
+ 𝑂(𝑟−𝑑−3)

The dictionary for operators of dimension 1 has been completely worked out
(Giusto, Moscato, Russo, ‘15)



Dimension 2

Selection rules imply that CFT operators and supergravity fields that are related by the duality 
share the same quantum numbers

Degeneracies:
There are single and multi-trace operators with the same quantum numbers
There are different single-traces with the same quantum number 

𝜙𝐼
(2) ෨𝑂𝐼

(2)
=  𝛼 𝑂𝐼

(2)
+ 𝛽𝑂′𝐼

(2)
+ 𝛾𝐼𝑖𝑗𝑂𝑖

(1)
𝑂𝑗

(1)
+ ⋯

Identify the operator mixing:

• Brute force computation (assuming enough geometries where 𝜙𝐼
(2)

 is turned on are known)
• Choose a convenient basis: single-particle basis (where all extremal 3-pt functions are zero)



Shockwave: backreaction of high-energy, supersymmetry preserving massless quanta.

▪ Enables studies of instabilities of microstates. Perturb the system with a massive probe 

    

- Linear level: the particles moves on a geodesics of the 
background
- Non-linear level: If one includes backreaction, the particle 
radiates energy, and it will approach the evanescent 
ergosurface. But locally, the energy of a massive particle that 
approaches a null trajectory is enormous. This leads to an 
instability.

Shockwaves on microstate geometries

(Eperon, Reall, Santos ‘16)

▪ Provide a coarse grained description of a system that requires d.o.f. beyond supergravity 

Instability drives the microstates towards typical region of phase space (2 charge example)

(Lunin, Mathur ‘01)

(Marolf, Michel, Puhm ‘16)



Aim: construct first family of 3-charge microstate solutions with a shockwave in the core

Multicenter solutions: 3-charge supersymmetric microstates, # centers=2 (GLMT solution)

𝐴𝑑𝑆3𝑥 𝑆3

(with 𝑍𝑘orbifold)
Near horizon limit of 
GMLT solution

Asymptotically 
flat GLMT solution

(Bena, Warner ‘05)

(Giusto, Mathur, Saxena ‘04)

Spectral flow

Spectral Flow: large coordinate transformation

𝜙 → 𝜙 −
𝑠 + 1

𝑘
 𝑡 +

𝑠

𝑘
 𝑦 𝜓 → 𝜓 −

𝑠+1

𝑘
𝑦 +

𝑠

𝑘
 t

Global charges: increases the energy and the left angular momentum coordinate transformation

Glue with flat space



Backreaction of massless particles at 𝑟 = 0, 𝜃 =
𝜋

2
. We impose: 

- Supersymmetry is preserved
- Good classical limit: Take many of these particles, uniformly distributed along 𝜙. 

- Each particle can have different energy, but such that 𝐸 ≫
1

𝑅𝐴𝑑𝑠
, so that the wavelength 

𝜆 ≪ 𝑅𝐴𝑑𝑠 (Pointlike)

Starting point: 𝐴𝑑𝑆3 × 𝑆3 (𝑍𝑘 orbifold) 

𝑑𝑠𝐴𝑑𝑠3×𝑆3
2 = 𝑅𝐴𝑑𝑠

2 (− 1 + 𝑟2 𝑑𝑡2 +
1

1 + 𝑟2
𝑑𝑟2 + 𝑟2𝑑𝑦2 + 𝑑𝜃2 + sin2 𝜃 𝑑𝜙2 + cos2 𝜃 𝑑𝜓2)

𝑑𝑠2 = 𝑑𝑠𝐴𝑑𝑠3×𝑆3
2 + 𝑞 𝑅𝐴𝑑𝑠

2
𝑟2 + 1 𝑑𝑡 + sin2 𝜃 𝑑𝜙

2
− 𝑟2𝑑𝑦 − cos2 𝜃 𝑑𝜓 2

𝑟2 + cos2 𝜃

0 ≤ 𝑞 < 1 parametrises the strength of the shock wave. (Lunin, Mathur ‘01)



Strategy to build the solutions:
▪ Spectral flow: GLMT solution with a backreacted shockwave in the decoupling limit
▪ Asymptotically flat extension: first family of 3-charge microstates with a backreacted shockwave 

in the core

▪ Proposed CFT dual states: the shockwave is represented by states in a highly twisted sector of 
the CFT (order 𝑁>0 copies of the CFT are glued together)

▪ The shockwave is not located on the evanescent ergosurface of the solution (no direct 
connection with the instability)

▪ The shockwave drives the microstates toward more typical regions of the phase space



Computational methods

Aim: design a method to derive approximate multicenter solutions

Multicenter solutions: involve a Gibbons-Hawking metric
 
They are defined by a set of harmonic functions in 3-dim Euclidean space

Spacetime has non 
trivial topology

a=0,1,…,n-1 labels the number of centers
i=1,2,3 labels the gauge fields
𝑟𝑎 is the distance from the a-th center

Mathematically, by fixing the positions of the centers and the coefficients of the harmonic 
functions you get a solution. Physically, there are further constrains (which make life harder)



Interested in solutions that:
i) are horizonless
ii) are smooth (up to possible orbifold singularities)
iii) are asymptotically flat in 5D
iv) respect charge quantization conditions
v) are macroscopic (have large asymptotic charges)

Constraints on the positions 
of the centers and the 
coefficients of the harmonic 
functions

Constraints:
iv) 𝑘𝑎

𝑖 : flux parameters must be integers in appropriate units

i), ii) imply the Bubble Equations

Relation between 𝑘𝑎
𝑖  and 𝑟𝑎𝑏 :

• Solve for the 𝑘𝑎
𝑖 : obtain irrational fluxes

• Solve for 𝑟𝑎𝑏: obtain unphysical distances 
(violations of triangular inequality)



Ways out:
i) Arrange special locations of the centers, so that distances are rational (solve for 𝑘𝑎

𝑖 )

ii)     Consider generic locations, and construct approximate solutions
(Avila, Ramirez, Ruiperez ‘17)

We focus on the second approach, and developed an algorithm that comprises two parts:
i)  Bayesian optimization: algorithm to find global maxima of black box functions
 

ii) Evolutionary algorithm: optimization method inspired by Darwin’s theory

We generate good seed solutions by considering 𝑘𝑎
𝑖  as dependent 

variables. We optimize positions of the centers so that the 𝑘𝑎
𝑖  we 

obtain generate large asymptotic charges

Round 𝑘𝑎
𝑖  of the seed solution and consider the positions as dependent variables.

- Population of solutions
- Fitness function, in our case the Bubble equations (defines the selection method)
- Reproduction mechanism (inheritance)



The algorithm can be used to derive solutions with an arbitrary number of centers 
(constraint: computational resources) 

5 centers example:

Respects all the constraints 
imposed by physics, but for 
the bubble equations which 
are solved to machine 
precision



Conclusions and future directions
We have introduced the “fuzzball proposal”, which at the current state of things is a conjecture.
Various tools can be employed to test and corroborate it

• Holography:
The method to develop the dictionary is mature and can be used at higher orders, even though it 
computationally hard. So far, used to identify holographic duals to known microstate geometries; it 
could be worth to further explore it to guide new microstate geometries constructions.

• Shockwaves:
Provide a coarse-grained descriptions of microstates that cannot be fully described in supergravity. 
It would be interesting to study backreactions of shockwaves in ergoregions of non-extremal 
microstates

• Computational methods:
Used to derive approximate microstate geometries. Use these methods to generate a training set 
to be employed in ML setups.



THANK YOU!
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