Damping wings in the Lyman- α forest A model-independent measurement of the neutral fraction at 5.4 < z < 6.1

Benedetta Spina (she/her)

Institute for Theoretical Physics, Heidelberg University

CASTLE, 19.09.24

arXiv:2405.12273

Benedetta Spina, Sarah E. I. Bosman, Frederick B. Davies, Prakash Gaikwad, Yongda Zhu

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Introduction **Universe expansion**

Epoch of Reionization (EoR)

 \bigcirc

Galaxies & DM Today ~ 400 Myr $\sim 10 \, \mathrm{Gyr}$ ~ 13.8 Gyr Time after BB ~ 10 ~ 1 0

emitting high-energy radiation.

from p^+ ionizing the IGM (HI, Hel).

grow and ionize the IGM.

fully ionized*.

*except within high-density selfshielded regions

+

Introduction Gunn-Peterson (GP) trough damping wings

Flux

Introduction Gunn-Peterson (GP) trough damping wings

 Δv

Stack GP-DWs to Cconstrain the endImage: of the EoR Gunn&Peterson (1967) Miralda-Escudé (1998)

Damping Wing (DW)

- Optical depth $\tau_{\rm DW} \propto x_{\rm HI}, \Delta v$
- Transmission flux $T(\Delta v) = e^{-\tau_{\rm DW}(x_{\rm HI}, \Delta v)}$

Work plan How to measure the HI fraction

Identify GP troughs in **38 XQR-30** QSOs in the zranges 5.4 – 5.8, 5.8 – 6.1

Stacking of *long* vs. *short* gaps, avoiding contamination from HII

Hydrogen

Gaps identification Lyman- α and Lyman- β

Spina et al. (2024)

Gaps identification Distribution

Long gaps $L > L_{\text{thres}}$

Compromise between

- High number of gaps (≥ 100)
- Contamination from HII (short gaps)

$$L_{\rm thres} = 340 \, \rm km/s$$

~ 130 10^{3} Lthres ~ 300 10^{2} OW Z Short L 5.5 5.4

Gap length L [s⁻¹km]

Spina et al. (2024)

Long vs. Short gaps **Damping wings: first detection**

Malloy&Lidz (2015)

Flux

0

Malloy&Lidz (2015, adapted)

Short gaps Long gaps

 $\Delta v [km/s]$

Local HI fraction $x_{\rm HI}(L)$ HI fraction in each gap

Employ two toy-models to define the local $x_{\rm HI}(L)$, given a gap of length L

Fit the functional shape using χ^2 **minimisation**, constraining L_C

Constraining the **global** $x_{\rm HI}$ using the best-fit for L_C for the two models

Results

Conclusion Take-home messages

First identification of **GP** damping wings by stacking dark gaps in the Lyman- α forest.

Existence of **neutral** islands near the end of the EoR (late-and-slow reionization scenario).

Measurement of $x_{\rm HI} = 0.19 \pm 0.07 \, \binom{+0.11}{-0.16}$ at z = 5.6**Limit** of $x_{\rm HI} < 0.44$ at z = 5.9.

Explore Lyman series, Compare with **simulations**.

Spina et al. (2024) arXiv:2405.12273

