

FORECASTING THE SENSITIVITY OF PULSAR TIMING ARRAYS TO SCALAR-INDUCED GW

Chiara Cecchini, Gabriele Franciolini (CERN), Mauro Pieroni (CERN)

Chiara Cecchini

Department of Physics, University of Trento, Italy – TIFPA–INFN – CERN TH

Trento Institute for **Fundamental Physics** and Applications

CASTLE 2024 17th–20th September 2024 Tagliolo di Monferrato

September, 19th 2024

1. PULSAR TIMING ARRAYS

2. FORECASTS: INTRODUCING A NEW METHOD

3. SCALAR-INDUCED GW: CONSTRAINING A POTENTIAL SIGNAL

MORPHOLOGY OF A GW SIGNAL

DETERMINISTIC SIGNAL

- ► Generated by binaries
- ► Time coherency
- ► Well localized in the sky

Strain data from Hanford and Livingston detectors at the time of GW170104. Credit: [1]

STOCHASTIC BACKGROUND

- Superposition of many signals
- ► No time coherency
- ► Diffuse in the sky

PRESENT AND FUTURE DETECTORS

Gravitational-wave sensitivity-curve plot using characteristic strain. Credit: [3]

MILLISECOND PULSARS

- Pulsars with a rotational period less then 10 ms
- Spun up through accretion of matter from a companion star in a close binary system
- Lighthouse effect: we observe the beam radiation
- \succ ~ 400 known pulsars
- Observed in the radio frequencies

Steps astronomers say are needed to create a pulsar with a superfast spin Credit: [4]

PULSAR TIMING

Accounting for each pulse

Pulsar timing process. Credit: [5]

> All these factors must be taken into account to build a pulsar timing model ► Time residuals: difference between the measured TOA and the model

Many factors dictating the pulse arrival times:

- Pulse period, period derivatives, location on the sky
- ► GR effects, dispersion measure

PULSAR TIMING ARRAYS

Taking many pulsars reduces the noise contribution

Pulsar timing arrays. Credit: [6]

- Each pulsar is monitored by one or more telescopes
- Several frequencies are monitored
- ► Long acquisition time (> yrs) to go to very low frequencies

 $f_{vr} \sim 3.17 \times 10^{-8} \,\mathrm{Hz}$

THE MODEL: HELLINGS & DOWNS CURVE

pair of Earth-pulsar baseline follows the Hellings and Downs curve

Credit: [7]

> For an isotropic, unpolarized stochastic background of quadrupolar gravitational radiation with + and \times polarisation modes, the expected correlated response of a

NOISE SOURCES

- ► White noise: due to instrumental noise and change of shape of different pulses
- Red noise: due to the stochasticity in the rotation of pulsars
- Chromatic noise components: temporal variations in dispersion measure and scattering variations due to the time-varying electron column density along the line of sight

> Any of these is expected to behave as a quadrupole!

EVIDENCE FOR A STOCHASTIC GW BACKGROUND

67 pulsars		0.8
Observation time: 16.03 yrs		0.6
Not a 5σ evidence, but		0.4
observation by independent	$\Gamma(\xi_{ab}$	0.2
collaborations		0.0

- -0.4

Credit: [9]

ASTROPHYSICAL OR COSMOLOGICAL ORIGIN?

► The observed signal is consistent with SMBBHs

► GW strain is modelled with a power law

$$h_c(f) = A_{GWB} \left(\frac{f}{f_{yr}}\right)^{\alpha}$$

 10^{-14}

 h_c

 10^{-15}

Credit: [10]

ASTROPHYSICAL OR COSMOLOGICAL ORIGIN?

> The observed signal is also consistent with many other sources

WHAT'S NEXT?

- ► More data: longer observation time, more pulsars and frequency points
- precision pulsar timing measurement with uncertainties below ~ 100 ns

► New generation telescopes: the Square Kilometer Array (SKA) will provide high-

11

SPEED UP THE PRESENT ANALYSIS

S. Babak, M. Flaxa, G. Franciolini, & M. Pieroni PR D 110, 063022 (2024) P. F. Depta, V. Domcke, G. Franciolini, & M. Pieroni arXiv:2407.14460

► Data in the frequency domain:

 $\langle \tilde{s} \rangle = 0$ for SGWB $\langle \tilde{n} \rangle = 0$ for noise

- > Information is in the variance: $\langle d^2 \rangle =$

$$-\ln \mathcal{L}(\tilde{d} \mid \theta) \propto \sum_{k,IJ} \ln[\theta]$$

 $C_{IJ}(f) = P_{n,IJ}(f) + \chi_{IJ}R(f)P_h(f)$

* I, J are pulsar indices

$$= \langle \tilde{s}^2 \rangle + \langle \tilde{n}^2 \rangle = RP_h + P_n$$

► Simplifying assumptions: Gaussian, (isotropic) and stationary data for each pulsar

 $[C_{IJ}(f_k,\theta))] + \tilde{d}_I^k C_{IJ}^{-1}(f_k,\theta) \tilde{d}_J^{k*}$

SPEED UP THE PRESENT ANALYSIS

> Fisher matrix estimates on uncertainties

$$F_{\alpha\beta} \equiv -\frac{\partial^2 \log \mathscr{L}}{\partial \theta^{\alpha} \partial \theta^{\beta}}$$

parameters

The python code fastPTA is available: <u>https://github.com/Mauropieroni/fastPTA/</u>

S. Babak, M. Flaxa, G. Franciolini, & M. Pieroni PR D 110, 063022 (2024)

$$= T_{obs} \sum_{f_k} \frac{\partial \log C}{\partial \theta^{\alpha}} \frac{\partial \log C}{\partial \theta^{\beta}}$$

with $C(f_k, \theta_0) = \tilde{d}^k \tilde{d}^{k*}$ and θ_0 is the maximum likelihood estimator of model

> By inverting the FIM one can estimate the uncertainties as $\sigma_{\alpha} \equiv \sqrt{F_{\alpha\alpha}^{-1}}$

COMPARISON WITH FULL TIME DOMAIN BAYESIAN ANALYSIS S. Babak, M. Flaxa, G. Franciolini, & M. Pieroni PR D 110, 063022 (2024)

- ► Is this method consistent with the standard approach?
- Let's consider a power law signal and test against current data + simulated mock data for future configurations

 $h^2 \Omega_{GW}$ =

$$= 10^{\alpha} \left(\frac{f}{f_{yr}}\right)^{n_T}$$

Fully consistent!

Computational time of a day vs few seconds

SCALAR INDUCED GW

V. Dandoy, V. Domcke, & F. Rompineve SciPost Phys. Core 6, 060 (2023)

- gravitational waves (SIGW)
- > Spectrum of GW induced at second order by scalar perturbations. We stay agnostic on the specific inflationary models and we adopt a log-normal parametrization

$$P_{\zeta}(k) = \frac{A_{\zeta}}{\sqrt{2\pi}\Delta} \exp\left[-\frac{\log^2(k/k_*)}{2\Delta^2}\right]$$

> It captures the possibility of a peak in the power spectrum at small scales

> Aim: forecasting the sensitivity of PTAs to a primordial signal: scalar-induced

SCALAR INDUCED GW AND SMBBH POWER-LAW MODEL (SMBHs) + SIGWs (with maximal amplitude)

SCALING OF THE UNCERTAINTIES WITH N $\ensuremath{\mathsf{EPTA}}$

➤ Expected scaling ∝ 1/√N
➤ Much better results for SKA

SKA

PRIMORDIAL BLACK HOLES

Fraction f_{PBH} = Ω_{PBH}/Ω_{DM} of the total dark matter today
Avoid PBH overproduction!

 $f_{PRH} < 1$

Large signal amplitude is needed to better constrain SIGW

A too large amplitude overproduces PBH

CONSTRAINING THE PARAMETER SPACE

- ► Keep $f_{\text{PBH}} < 1$
- Measure $\log_{10} A_{\zeta}$ with $< 3\sigma$ uncertainties
- ► Have a power-law amplitude within the inferred posteriors

Look for a region in the parameter space of signal amplitudes where we can:

UPPER BOUND ON A

► Upper bound from NANOGrav15 ($N_p = 68$) and scaling with increasing number of pulsars

See A. J. Iovino, G. Prerna, A. Riotto, & H. Veermae arXiv: 2406.20089 for comparison = 68) and scaling with increasing number

SUMMARY

- GWs in the nHz frequency range
- > We expect to gain in sensitivity with next generation experiments
- Forecasting can be made faster
- primordial black holes (PBHs)

> Pulsar timing arrays (PTAs) provide an unprecedent opportunity to search for

Concrete possibility of measuring a scalar-induced GW signal and constrining

IMAGE CREDITS

- [1] B. P. Abbott et al, *PRL* **118**, 221101 (2017)
- [2] A. Stuver/LIGO
- [3] Christopher Berry blog
- [4] B. Saxton, NRAO/AUI/NSF
- [5] H. Thankful Cremartie, Carnegie Colloquium, October 17, 2023
- [6] David Champion/Max Planck Institute for Radio Astronomy
- [7] Fredrick A. Jenet, Joseph D. Romano, Am. J. Phys., 83, 635-645 (2015)
- [8] NANOGrav Collaboration, <u>arXiv:1810.06594</u>
- [9] G. Agazie et al 2023 ApJL 951 L8
- [10] G. Agazie et al 2023 ApJL 952 L37
- [11] <u>https://nanograv.org/15yr/Summary/NewPhysics</u>
- [12] <u>https://www.skao.int/en/explore/telescopes</u>
- [13] V. Dandoy, V. Domcke, & F. Rompineve SciPost Phys. Core 6, 060 (2023)
- [14] B. Carr, K. Kohri, Y. Sendouda and J. Yokoyama, *Rept. Prog. Phys.* 84, no.11, 116902 (2021)

BACKUP SLIDES

SCALAR INDUCED GW

► The spectrum off GWs can be computed analytically

$$\Omega_{GW}\left(\frac{f}{f_*},\Delta,A_{\zeta}\right)=\ldots$$

$$\Omega_{\rm GW}h^2 = \left[\frac{a(T)}{a_0}\right]^4 \left[\frac{H(T)}{H_0/h}\right]^2 \Omega_{\rm GW}(T)$$

$$\approx 1.6 \times 10^{-5} \left[\frac{g_*(T)}{100} \right] \left[\frac{g_{*s}(T)}{100} \right]^{-5}$$

> The spectrum today can be easily evaluated with a temperature-dependent modulation (GWs are decoupled from the thermal bath and they always evolve as radiation)

PRIMORDIAL BLACK HOLES

formation

Complementary constraints from PBH overproduction

► Mass of the PBH and frequency of the GW are related by the Hubble scale at

FIM VS MCMC FOR NOISELESS DATA

► EPTA-like **noiseless** data

► Large SNR to see if the two methods agree $(\log_{10}A_{\zeta} = -1.25)$

FIM VS MCMC FOR NOISELESS DATA

- ► EPTA-like **noiseless** data
- Lowering the SNR $(\log_{10}A_{\zeta} = -2)$
- \blacktriangleright Degeneracy on f_*
- Visible effect of the priors

