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Precision cosmology
After the Planck releases it became 
common to say that we are in the era 
of precision cosmology.

Such a precision is destined to 
improve thanks to Stage IV survey, 
and we will be able to measure 
parameters of our standard model 
with extreme precision

Euclid Collaboration: Mellier et al. (2024)

https://arxiv.org/abs/2405.13491


Cracks in the ΛCDM model

Freedman ApJ (2021)

We are obtaining precise constraints, but are they accurate?
Our model might be wrong!

● Dark components (matter and energy) are still unknown
● Fine tuning and coincidence problem for Λ
● Tensions in measurements of parameters

https://arxiv.org/abs/2106.15656


Search for new physics
Tensions and issues of our standard model prompt us to test for alternatives.

● we have way too many model to think of testing them one by one looking 
for what’s better than ΛCDM

● while modelling observables in our alternative model we are required to 
have extreme accuracy to not bias results (huge number of parameters)

● the choices we do for theoretical models and parameterizations can 
significantly affect results
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What can machine learning do for us?
● Reconstruction:

obtain trend for cosmological functions without assuming any model

● Inference:
new parameter inference methods, avoiding issues of current approaches 
and obtaining results faster

● Classification:
use NN classifiers to distinguish different progenitors of astrophysical 
events (e.g. PBH in GW catalogues, DM events in gamma rays 
observations)



ML and function reconstruction



Reconstructing cosmological functions
A first, straightforward, application of Machine Learning for our purposes is  to 
reconstruct cosmological functions without any model assumptions.

This allows to extract information directly on functions rather than on 
parameters.

Reconstructing techniques also allow you to obtain derivatives of cosmological 
and combine all reconstructions together to obtain non observable quantities.
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data covariance



Gaussian processes
Reconstructing a function with GP means assuming that your data are a 
Gaussian realization of the function with a Gaussian noise provided by the 
data covariance

The Kernel function contains the “hyper-parameters”. These depend on the 
choice of the Kernel. Once these are determined by feeding data to the GP, 
you can obtain the function
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Application: consistency check for GR (and other stuff)
We assume (flat) w(z)CDM and related the EoS of DE to observable quantities, 
trying to obtain it from background and perturbation equations.

Looking at the background expansion we find

while from the linear evolution of perturbations we get

Perenon, MM et al. Phys. Dark. Univ. (2022)

https://arxiv.org/abs/2206.12375


A promising approach
By exploiting Machine Learning 
algorithms (GP), one can minimize 
assumptions and reconstruct 
functions in a differentiable way.
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A promising approach
By exploiting Machine Learning 
algorithms (GP), one can minimize 
assumptions and reconstruct 
functions in a differentiable way.

Plugging the reconstructed functions 
into our estimators we can compare 
the results.

Perenon, MM et al. Phys. Dark. Univ. (2022)

With the improvement of data from 
LSS survey, this approach could be 
significantly improved.

https://arxiv.org/abs/2206.12375


Setbacks
ML reconstructions method as GP allow us to avoid model assumptions and 
obtain nice consistency checks… but:

● Be careful of leftover assumptions in your tests;

● No need to specify a model and/or choose a parameterization, however 
these methods depend on hyper-parameters that need to be handled 
with care (priors, kernels, etc…);

● Assumptions done in data extraction are completely hidden;

● ML methods stability can be problematic with few/bad data
Perenon, MM et al. Phys. Dark. Univ. (2021)

https://arxiv.org/abs/2105.01613


ML and parameter inference



Simulation based inference
SBI techniques allow to overcome some of the problems appearing with the 
increased precision of our experiments, e.g.

● high posterior dimensionality: in order to model observables accurately, 
nuisance effects must be included, introducing several parameters 
(O(100) for Stage IV), which can be complicated to sample

● likelihood modelling: SBI methods avoid assumptions on the shape of the 
likelihood function, e.g. Gaussianity. Likelihood information is accessed 
implicitly, with data realizations given different sets of parameters



SBI with Marginal Neural Ratio Estimation (MNRE)
What we want our analyses to provide us is the posterior of parameters

Our standard methods sample the parameter space to reconstruct the posterior:

● requires modelling the likelihood
● can get complicated and expensive when you have MANY parameters
● samples the whole parameter space, even things we want to throw away
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SBI with Marginal Neural Ratio Estimation (MNRE)
What we want our analyses to provide us is the posterior of parameters

MNRE takes a different approach:

● draw parameters from prior and simulate data from joint distribution

● construct samples from product of marginal probabilities (pair shuffling)

● use these samples to train a NN so that when present a set of data it can return



Why marginal?
Once the NN returns the posterior-to-prior ratio, we can use this to weight 
samples from extracted from the prior, but we can do this only on a subset of 
parameters.

● we can directly achieve 1- and 2-dimensional marginal posteriors, without 
needing to sample the full joint posterior: more efficient than traditional 
methods (and other SBI techniques)

● we can ignore large numbers of nuisance parameters, targeting only the 
parameters of interest



An example: LSS constraints with MNRE
By applying the MNRE approach, through the Swyft code, to LSS we can speed 
up parameter inference significantly.

We generate theoretical expectations 
of 3x2pt observables for parameters 
extracted from the prior and train the 
NN.

We then  provide a synthetic dataset 
and use the NN to obtain marginal 
constraints.

https://github.com/undark-lab/swyft


An example: LSS constraints with MNRE
By applying the MNRE approach, through the Swyft code, to LSS we can speed 
up parameter inference significantly.

We generate theoretical expectations 
of 3x2pt observables for parameters 
extracted from the prior and train the 
NN.

We then  provide a synthetic dataset 
and use the NN to obtain marginal 
constraints.

Franco-Abellan et al. (2024)

https://github.com/undark-lab/swyft
https://arxiv.org/abs/2403.14750


Setbacks
While SBI allows us to overcome some analysis issues, e.g. the likelihood 
modelling, we still need to face some setbacks

● this approach still requires us to assume a model from which, given the 
parameters we can obtain a theoretical expectation for data. Are we 
accurate?

● we can still be limited by simulation speed and by the number of 
parameters

● Neural network architecture must be set up carefully



Conclusions 



Take home messages
● The improvement in data quality from current and upcoming experiments 

will provide great precision in our measurement, but also new issues

● Model accuracy becomes crucial. This requires heavier calculation which 
could become problematic. We should also think of testing our models 
with more agnostic approaches.

● Machine learning approaches can provide a framework to tackle these 
issues
○ Reconstruction of fundamental cosmological function for consistency tests
○ Simulation based inference for faster constraints and to avoid likelihood modelling

● Still a long road ahead! We need to ensure the accuracy of these methods 
and the robustness for different data quality and type.



Extra slides
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Comparing results

We can obtain measurements of the EoS from different datasets and compare 
the results. If our assumptions are valid, results need to coincide.

●                             the same mechanism breaks ΛCDM and we can use the 
reconstructions to trace its behaviour;

●                             competing effects at play in the two sectors (e.g. massive 
neutrinos vs MG);

●                                only perturbations affected (MG?), it can also hint for 
problems in how we obtain the data on f (z).



Something more about MNRE
We want the posterior-to-prior ratio, so that we can wait samples

we can train a binary classifier

Figure courtesy of
Guadalupe
Cañas Herrera
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Other SBI applications
What we did is mostly an attempt to speed up parameter inference, but SBI 
can have several other applications, e.g.

● field-level inference: if we can obtain simulations of an observation field, 
we can use this to train the NN. No need to use summary statistics, we let 
the NN choose its own;

● distribution reconstruction: obtain cosmological observables from the 
distribution of a given observable, e.g. GW dL with no redshift info

e.g. Villaescusa-Navarro et al. (2021) , von Wietersheim-Kramsta et al. (2024)

MM et al. in preparation

https://arxiv.org/abs/2109.10360
https://arxiv.org/abs/2404.15402

