Deciphering FEL pulse profiles with autoencoder networks

Gesa Goetzke – FLASH Photon Diagnostics

Longitudinal photon diagnostics Workshop

Gesa Goetzke¹, Rajan Plumley², Felix Möller³, Thorsten Otto¹, Daniel Ratner², Joshua Turner², Stefan Düsterer¹, Gregor Hartmann³

- ¹ Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- ² SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- ³ Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, German

Pulse length diagnostics

https://flash.desy.de/sites2009/site_vuvfel/content/e66400/infoboxContent259146/FLASH_layout-2022.png

- We want photon pulse length information.

- We analyze the energy of the electrons that created this photon pulse.

Obtaining power profiles

Few-femtosecond time-resolved measurements of Xray free-electron lasers

C. Behrens, F.-J. Decker, Y. Ding ¹², V. A. Dolgashev, J. Frisch, Z. Huang, P. Krejcik ¹², H. Loos, A. Lutman, T. J. Maxwell, J. Turner, J. Wang, M.-H. Wang, J. Welch & J. Wu

Nature Communications 5, Article number: 3762 (2014) Cite this article

- to get a power profile you have to compare lasing on images with the matching lasing off images.
- you can compare the center of mass or the energy spread.

Com:
$$P = \Delta E \cdot I/e$$

Spread: P
$$\propto I^{2/3}(\sigma_{E,on}^2 - \sigma_{E,off}^2)$$

lasing off reference

- THz pulses are much broader
- This has to do with the long THz streaking ramp
- For better comparison of the pulse shapes:
 → convolve the Polarix profiles with the THz streaking instrument function

Challenges in TDS analysis

Finding matching lasing off references

Finding the 'perfect' reference:

Isolating the signal / matching in x:

HELMHOLTZ

time

time

time

time

How to adress those challenges

"for foundational discoveries and inventions that enable machine learning with artificial neural networks"

"for protein structure prediction"

Machine learning is really good in pattern recognition, and with handling of large datasets.

How to adress those challenges

"for foundational discoveries and inventions that enable machine learning with artificial neural networks"

"for protein structure prediction"

GPT4 omni

But sometimes fail in most basic tasks

You should never blindly trust them.

Two projects with XTCAV and machine learning

@FLASH (DESY)

- SASE
- strong lasing signal

@LCLS (SLAC)

With Rajan Plumley, Daniel Ratner, Joshua Turner

- self seeded
- emittence spoiling foil
- very weak lasing signal

SASE Data from FLASH

- Electron energy distribution changes from shot to shot.
- We want a method that can learn lasing off representations and can interpolate between them.
- We want a method that can solve the x,y matching problem for us.

Beta-Variational Convolutional Autoencoders

lasing off reference 8 Delta E in MeV A o 2 ο 200 -400 -200 0 Time in fs lasing on image 8 Delta E in MeV 4 o 2 o -400 -200 200 Ò Time in fs classical approach 8 6 4 2 0 -200200 -4000 time in fs

Autoencoder

0

time axis in px

DESY.

β variational autoencoder

Convolutional β-Variational Autoencoder

decoder is mirrored

HELMHOLTZ

DESY.

Some reconstructions

Detect the lasing node

HELMHOLTZ

GMD in µJ

DESY.

Traversing the latent space: web app

1) Permanent link, start it and grab a coffee

https://mybinder.org/v2/gh/ Goetzkeg/betaVAEDemo/HEAD? urlpath=voila%2Frender %2FvisLS_lowCompute.ipynb

HELMHOLTZ

2) Just today, run it at my personal computer at home

https://8f7c-2a02-3100-8b01-8900-6611-aedc-7c73d7f0.ngrok-free.app

You are about to visit: 8f7c-2a02-3100-8b01-8900-6611-aedc-7c73-d7f0.ngrok-free.app

Website IP: 2a02:3100:8b01:8900:óó11:aedc:7c73:d7f0

- This website is served for free through ngrok.com.
- You should only visit this website if you trust whoever sent the link to you.
- Be careful about disclosing personal or financial information like passwords, phone numbers, or credit cards.

Visit Site

Correlation with the GMD

Two projects with XTCAV and machine learning

@FLASH (DESY)

- SASE
- strong lasing signal

@LCLS (SLAC)

With Rajan Plumley, Daniel Ratner, Joshua Turner

- self seeded
- emittence spoiling foil
- very weak lasing signal

Requirements and Setup

2 pulses with few fs distance, monochromatic (8.5 keV), known intensity ratio

Emittence spoiling foil

Femtosecond profiling of shaped x-ray pulses

M C Hoffmann^{16,1}, I Grguraš^{16,2,3}, C Behrens⁴, C Bostedt^{1,5}, J Bozek^{1,6}, H Bromberger^{2,3}, R Coffee¹, J T Costello⁷, L F DiMauro⁸, Y Ding¹ + Show full author list

Published 26 March 2018 \star © 2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft

New Journal of Physics, Volume 20, March 2018

Self-seeding

Article | Published: 12 August 2012

Demonstration of self-seeding in a hard-X-ray freeelectron laser

J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma [™], Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Yu. Shvyd'ko, S. Spampinati, S. Stoupin, S. Terentyev, E. Trakhtenberg, ... D. Zhu + Show authors

Nature Photonics 6, 693-698 (2012) Cite this article

Lasing on and lasing off examples

Classical evaluation fails

Network approach: training phase

[Submitted on 18 May 2015]

U-Net: Convolutional Networks for Biomedical Image Segmentation

Olaf Ronneberger, Philipp Fischer, Thomas Brox

Network approach: evaluation phase

Results: one reconstruction in detail

Results: power profiles for different setups

Results: power profiles for different setups

Results: how to cross check

- Check if integral of both pulses match with GMD

Results: find the relevant pulses

Questions?

Finding the right reference image

'classical approach'

- 1) clean lasing on/off images.
- 2) slice them in n slices.
- 3) calculate the x-Projection.
- 4) nr_clusters manually or with gap_statistics.
- 5) sklearn.cluster.AgglomerativeClustering with euclidean distance to cluster them in a group, calculate mean and spread of the group, average them.
- 6) use np.corrcoef to find the best reference group (Pearson productmoment correlation coefficients).
- 7) compare com and spread of lasing on with the averaged con / spread of the best matching group.
- 8) use a different detector to find the matching total power / y offset.

$$\mathbf{R}_{ij} = \frac{C_{ij}}{\sqrt{C_{ii}C_{jj}}}$$

Beta-Variational Autoencoder

Basic principle

- Variational autoencoder: learn a distribution in the latent space
- Loss includes the deviation from a Gaussian normal distribution (KL divergence)

 $D_{KL} = \frac{1}{2} \sum_{i=1}^{k} (\sigma_i^2 + \mu_i^2 - 1 - \ln(\sigma_i^2))$

- Reparameterization trick for backpropagation
- Beta controls the disentanglement

$\beta\text{-VAE}$: Learning Basic Visual Concepts with a Constrained Variational Framework

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mohamed, Alexander Lerchner Google DeepMind {irinah, lmatthey, arkap, cpburgess, glorotx, botvinick, shakir, lerchner)@google.com

Loss = ReconstructionError + β*DisentaglementError

Two single shot examples

Good agreement

Different intensity ratios

