

Multi-technique investigation: short and medium range order

Marco Bazzan

University of Padova and INFN

marco.bazzan@unipd.it

MORPHOLOGICAL COMPOSITION

Stoichiometry

• Contaminants

• Dopants

- Thickness
- Surface/interface roughness
- Defects (bubbles, cracks)

COMPOSITION

Einstein Telescope Composition: Ion beam analysis

Ion Beam Backscattering Analysis (RBS-NRA- ERDA)

Chemical elements absolute quantification

- Investigated depth: from monolayer to µm's
- Sensitivity: it depends... 1 to 0.1 at %

- Al/F = 0.4 (instead of 0.33)
- $\rho = 2.7 \ g/cm^3$
- Xe, Mo contamination from process gas and grids
- Cu, Ta traces

Bischi, M., et al. "Characterization of Ion-Beam-Sputtered AIF3 Thin Films for Gravitational-Wave Interferometers." *Physical Review Applied* 18.5 (2022): 054074.

Composition:

Einstex-Fay Photoemission Spectroscopy

- **Relative quantification of elements and chemical state**
- Investigated depth: from monolayer to few nm
- \succ Sensitivity: it depends... (1 to 0.1 % at)

SiO2/Ti:Ta2O5 multilayer

Composition:

Einsteis Secondary Ion Mass Spectrometry

SiN3 with heavy oxygen contamination and nonuniform stoichiometry

Elemental depth profiling

- Investigated depth: from few nm to about 1 -2 microns
- Sensitivity: it depends but it can be very high (ppm...)
- Not absolute, needs an independent calibration

OLD d 110

MORPHOLOGY

Crystalline grains formation in Ta2O5 upon annealing 630°C 9 h

- Surface topography
- Very good height resolution (down to 1 Ang)
- Many different measure mode (contact, noncontact, lateral force, etc.)

Morphology: SEM

- Surface topography
- **Cross sectioning** \geq
- Very good height resolution (down to 1 Ang) \succ
- Possibilty to use different probes

SEM image of an ion beam-sputtered $\lambda/4$ multilayer stack of SiO₂ (light) and TiO₂ doped Ta_2O_5 (dark) designed for high-reflectivity at 1064 nm

Reid, S.; Martin, I.W. Development of Mirror Coatings for Gravitational Wave Detectors. Coatings 2016, 6, 61. https://doi.org/10.3390/coatings6040061

Morphology: Digital Optical Microscopy

Surface observation

- Sub-micron resolution
- Possiblity to perform large area mapping
- Software for analysis of images
- Defects (bubble, cracks, crystallites)

Bubbles in Hf:Ta2O5 annealed Crystalline grains in Ta2O5 after annealing

- Non- destructive
- Film Density
- Coating thickness (up to 500 nm)
- Interfaces study (roughness, conformatio etc.), also for ML.

Favaro, G., et al. *Physical Review Applied* 18.4 (2022): 044030.

Characterization of a SiC layer on Si deposited by magnetron sputtering, Thickness: t = (423.1 ± 0.1) nm ; Density ρ = (2.82 ± 0.05) g/cm3 RMS Roughness: σ = (2.3 ±0.1) nm

De-densification of a SiO2 layer upon thermal annealing

L.Silenzi et al. GWADW 2023

7<u>D</u>d 110

OPTICAL PROPERTIES

Cody-Lorentz dispersion model

Spectroscopic ellipsometer

Measures the reflected beam polarization as a function of:

- Input polarization
- Wavelength
- Angle of incidence

In general, the obtained data must be analyzed **assuming** an optical model: no direct inversion is possible

Photon Energy

$$\epsilon_{2}(E) = \begin{cases} \frac{E_{t}G(E_{t})L(E_{t})}{E} \exp\left(\frac{E-E_{t}}{E_{u}}\right), & 0 < E \le E\\ G(E)L(E) = \frac{(E-E_{g})^{2}}{(E-E_{g})^{2}+E_{p}^{2}} \frac{AE_{0}\Gamma E}{(E^{2}-E_{0}^{2})^{2}+\Gamma^{2}E^{2}}, & E > E_{t} \end{cases}$$

- **Refractve index and absorption at different wavelenghts** \geq
- Thickness and roughness >
- Investigated depth: from monolayer to µm's \geq
- Sensitivity: it depends... \succ

M. Magnozzi et al. VIR-0615A-22

Roughness

Example: Ti:Ta2O5

Einstein Telescope

Composition dependence of optical properties in titania-doped tantala

Monotonous trends:

- Refractive index
- Density
- Energy gap
- Urbach energy, not annealed

Non-monotonous trend:

• Urbach energy, annealed

This sample is the one with the best performances (lowest optical absorption, lowest thermal noise)

Amato, Alex, et al. "Observation of a correlation between internal friction and Urbach energy in amorphous oxides thin films." *Scientific Reports* 10.1 (2020): 1670.

M. Magnozzi et al. VIR-0615A-22

Einstein Telescope Optical properties: n situ ellipsometry

Heating/Cooling sample cell For in-situ measurement

Evolution of single layer Ti:Ta2O5 during standard 10h 500°C annealing

M. Magnozzi et al. VIR-0367A-24

Coptical properties: **Einstotal properties**:

TIS = PD/P0

Favaro, Giulio, et al. "Reduction of mechanical losses in ion-beam sputtered tantalum oxide thin films via partial crystallization." *Classical and Quantum Gravity* 41.10 (2024): 105009.

BRDF

BSDF: characterization of scattering properties

Bi-directional Scattering Distribution Function (BSDF), the ratio of the scattered radiance (ph/s-unit area -sr) to the incident irradiance (ph/s-unit area). A sort of 'reflectance per solid angle'.

 $BSDF = \frac{d\Phi_s/d\Omega_s}{(d\Phi_i)\cos\theta_s}$

Energy conservation: BSDF must be the same if the incident and scattered rays are reversed ('*Bidirectional*')

 $BSDF(\theta_i, \, \varphi_i, \, \theta_s, \, \varphi_s) = BSDF(\theta_s, \, \varphi_s, \, \theta_i, \, \varphi_i)$

L Conti - EPS HEP 2023 ; VIR-0518B-23

Optical properties:

Einstein Telescoph situ Scattering measurement

J. Smith et al. LIGO DCC G2400567-v5

7 bd 1

STRUCTURAL PROPERTIES

2-Theta [degrees]

estimated: Ta2O5 wt% = 20.8 Hf6Ta2O17 wt % = 79.2

Coptical properties: Einstein Teles Reaman Spectroscopy

- Sensitive to vibrational states -> short-range chemical bond signature
- Can be coupled to a microscope to provide spatial-resolved measurement
- > Not trivial interpretation.

and Quantum Gravity 41.10 (2024): 105009.

Favaro, Giulio, et al. "Reduction of mechanical losses in ion-beam sputtered tantalum oxide thin films via partial crystallization." *Classical*

high

≻

Structural properties: Einstein Payscalos orption spectroscopy

Elettra Sincrotrone Trieste

XANES

VANES Vanes Vanes Vary Absorption Near Edge Structure Particulation Providential of the second secon

Oxidation state and medium range

SiO2 structure evolution upon annealing:

- The short range structure reoganizes providing a dedensification.
- The long range order remains unaffected.

L.Silenzi et al. GWADW 2023

Einst (Imesitu) X-Ray Diffraction

Thermal stage for X-ray experiments

Crystallization Kinetics upon annealing

Evolution of different phases inside the coating

G. Lorenzin, M. Bazzan VIR 0622°-20

A. Martinelli et al. to be published

- Modern Material science techniques are a valuable help to understand the microscopic reason of the propertes of interest for GW coatings.
- A multi-technique approach is necessary to obtain a full picture of the sample under exam.
- In-situ techniques are a valuable option e.g. to understand the effect of treatments (annealing) and of the phenomena occurring during deposition.