

PRIN 2022LLCPMH "PHeSCAMI"

Pressurized Helium Scintillating Calorimeter for AntiMatter Identification

Riunione di avanzamento 2° Quadrimestre 30/05/2024

- Stato del progetto (F. Nozzoli)
- Pagina web del progetto (fatta da Piero Spinnato) (F. Nozzoli)
- Test sulla scintillazione residua del sistema WLS (G. Giovanazzi)
- Stato della simulazione Montecarlo (F. Rossi)

Test sulla scintillazione residue del sistema WLS: gamma

Misure in coincidenza con scintillatore LYSO

sorgente Lu176:

Emissione 307keV + 202keV + 401keV(0.34%)

sorgente Na22:

- Emissione 1275keV + 2×511keV

sorgente Co60

- Emissione 1332keV + 1173keV

Soglia Cherenkov β ~0.67 che per elettroni si traduce in energia >180keV

Test sulla scintillazione residue del sistema WLS: gamma

Confronto effettuato allineando le code del rate dei due spettri si ottiene un range di confidenza per il rapporto di efficienza tra WLS e scintillatore.

Tabella rapporti efficienza

Co60	11-18
Na22	5-10
LYSO	30-60

Sorgenti gamma

Test sulla scintillazione residue del sistema WLS: muoni

- Finger disposti a "sandwich" attorno al WLS/scintillatore
- Fotomoltiplicatore posizionato a lato per evitare interazioni dirette tra PMT e muoni
- Trigger coincidenza sui due finger

Misure in contemporanea per PMT e WLS

Dimensioni scintillatore:

87.7x 39.2 x 9.8 mm

Dimensioni WLS: 88.8 x 37.9 x 10.4 mm

Test sulla scintillazione residue del sistema WLS: muoni

Confrontando la posizione dei picchi si otteniamo il rapporto di efficienza tra scintillatore e WLS.

Confermando i risultati ottenuti precedentemente Muoni atmosferici

Tabella rapporti efficienza

Vecchio 1300V	7.6±0.1
Vecchio 1400V	10.3±0.2
Configurazione 1	13.0±0.2
Configurazione 🚹	13.7±0.9
Configurazione U	8.4±0.1
Configurazione U	9.0±0.1

Test sulla scintillazione residue del sistema WLS: protoni

Utilizzando la stessa configurazione la misurazione è stata ripetuta al fascio di proton terapia con energie sotto la soglia Cherenkov: 70-225 MeV β <0.6.

Come previsto solo lo scintillatore ha risposte diverse ad energie diverse.

Fascio protoni WLS

Fascio protoni scintillatore

Test sulla scintillazione residue del sistema WLS: β muoni

- Due coppie di scintillatori a distanza di 3 metri per misurare la velocità dei muoni
- Fotomoltiplicatore posizionato a lato per evitare interazioni dirette tra PMT e muoni
- Trigger coincidenza sulle due coppie di scintillatori
- Misure in contemporanea per Scintillatore e WLS
- scintillatore extra per eliminare eventi che passano attraverso il PMT del WLS

Test sulla scintillazione residue del sistema WLS: β muoni

Distribuzione delle energie misurate dal WLS in funzione di $1/\beta$:

- nero la media delle energie
- rosso fit alla radiazione
 Cherenkov

Eventi a β bassi coincidono con un calo in energia. Comportamento opposto a quello che si ritrova negli scintillatori

Soglia Cherenkov $1/\beta$ <1.48 Errore su β 7%

Test sulla scintillazione residue del sistema WLS: conclusioni

- FB118 possiede una bassa scintillazione residua (<50ph/MeV)
- FB118 è sensibile alla radiazione Cherenkov e ha la potenzialità di essere usato come alternativa ad una misura diretta di β con "Time of Flight"

Futuro:

- Ripetere la misura di β utilizzando una lastra di FB118 più grande per aumentare i conteggi
- Utilizzare più lastre incrementando la sensibilità della misura di β

Test sulla scintillazione residue del sistema WLS: Extra slides

