

Laboratori Nazionali del Gran Sas

ON analysis procedure Directionality 90Sr 29/04/2024

Concept

Measure MANGO Angular resolution

Angular Resolution!

90Sr volume

Simulate 90Sr spread inside the MANGO active

If everything is Gaussian we may subtract variances
However this will not be the case eheh

MANGO measurment

Measure MANGO Angular resolution with 90Sr

Only this for now!

- 55Fe Run
- 109Cd Run (Cu peak)
- 90Sr Run

Calibration with 2 points:

Line passing to 0 to increase dof

Gases atm pressure:

- He/CF 60/40 VGEM 420
- He/CF4 40/60 VGEM 460
- Ar/CF4 80/20 VGEM 405
- Ar/CF4 60/40 VGEM 450

Cameras:

- Quest
- Fusion

MANGO Directionality

fiorotto8/Directionality (github.com)

Derived from Flaminia, Samuele et al.

Cut for Directionality analysis (x and y are exchanged)

y_max>1650 && y_max<1800 &&scint>0 && recowidth/recolength<0.4

Cut for full containment

condition = (df['X_ImpactPoint'] > 1700) & (df['X_ImpactPoint'] < 1900) & (df['Y_ImpactPoint'] > 950) & (df['Y_ImpactPoint'] < 1300) & (df['Ymin'] > 550)

- 55Fe Run
- 109Cd Run (Cu peak)
- 90Sr Run

Gases atm pressure:

- He/CF 60/40 VGEM 420
- He/CF4 40/60 VGEM 460
- Ar/CF4 80/20 VGEM 405
- Ar/CF4 60/40 VGEM 450

Only this for now!

MANGO Simulation

Simulate 90Sr spread inside the MANGO active volume

- Source at the 2° Ring from GEM
- Tungsten collimator 2mm diameter

fiorotto8/MANGO_RadioactiveSource: Simulation of Cd-109 Radioactive source in MANGO (github.com)

Full containment:

is_fully_contained()
function in
analysis/RecoTrack.C checks
if there are hits in 5mm
distance from the sensitive
volume

Original direction:

 Linear fit on the first 4 hits of the electron in the sensitive volume

MANGO Simulation

Simulate 90Sr spread inside the MANGO active volume

10.cm

- Gaussian until 20keV
- Flat distribution...
- Below 10keV 2 horns at 50° appear

IntrinsicAngulardistributioncuts=[37.5,40.0]

Comparison

Clear shift in the Energy
Why is the measured size larger than the simulated?

Deconvolution and energy selection


```
def richardson_lucy(histogram, psf, iterations):
    # histogram is the measured distribution f
    # psf is the point spread function (intrinsic distribution h)
    # iterations is the number of iterations
    rl_estimate = np.copy(histogram)
    for i in range(iterations):
        relative_blur = histogram / np.convolve(rl_estimate, psf, mode='same')
        rl_estimate *= np.convolve(relative_blur, psf[::-1], mode='same')
        return rl_estimate
```

Usually used to unblur images In our case, we do the opposite to get the response function (i.e. detector response)

- The measured angular resolution is Gaussian but the intrinsic distribution is not (understandable)
- Convolving should be the best approach
- However, the difference is not that much, and the convolution is very sensible to small statistics...
- Main issue is the non-overlapping of the Energy spectrum
- When cutting, you may cut on the wrong energies for one or the other spectrum

Solve calibration issue

6.5

30 31 32 33 34 35 36 37 sc_integral

points

peaks

Basically

equivalent to

Need a less steep line → also 5.9keV is saturated

11keV shift!!!!!

passing

from 0 and

5.9+8keV

points

Results with shifts

- Same procedure as before
- New option in the DistrfromDirectionality to shift the measaured distirbution after the calibration

- Resolution is a lot better...
- Am I doing the right thing????