EUPRAXIA Preparatory Phase

EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

Status of the EuPRAXIA@SPARC_LAB Technical Design Report - WP15 R. Pompili (LNF-INFN) On behalf of the EuPRAXIA@SPARC_LAB collaboration

This project has received funding from the European Union's Horizon Europe programme under grant agreement No. 101079773

EIPRAXIA Pilot plasma-driven FELs experiments

Review on plasma-driven FELs just published!

Galletti, M., et al. "Prospects for free-electron lasers powered by plasma-wakefield-accelerated beams." Nature Photonics (2024): 1-12.

R. Pompili

EuPRAXIA@SPARC_LAB layout

R. Pompili

Parameter	Unit	PWFA	X-band
Electron Energy	GeV	1-1.2	1
Bunch Charge	pC	30-50	200-500
Peak Current	kA	1-2	1-2
RMS Energy Spread	%	0.1	0.1
RMS Bunch Length	μm	6-3	24-20
RMS norm Emittance	μm	1	1
Slice Energy Spread	%	≤0.05	≤0.05
Slice norm Emittance	um	0.5	0.5

Two different configurations:

- 500 MeV beam from the X-band linac + 500 MeV from the compact plasma module
 - Smaller accelerated charge
 - Shorter pulses
 - Final energy easily upgradable (up to 5 GeV) with similar building occupancy
- 1 GeV beam from the X-band linac alone (requires additional RF power)
 - Larger charge per bunch
 - Longer pulses
 - It exploits the largest RF field achievable with Xband technology

S-band Photo-injector

X-band LINAC, tests @ TEX

120 /<E acc > [%] 100 z [m] 1. E.m. design: done ð: (******** 2. Thermo-mechanical analysis: done 3. Mechanical design: done Pressure distribution 4. Vacuum calculations: done Dark current simulations: done 5. 6. Waveguide distribution simulation with attenuation calculations: done

-q=1e-1 -q=1e-1

D. Alesini, F. Cardelli

-		
	Value	
PARAMETER	with linear	w/o
	tapering	tapering
Frequency [GHz]	11.9942	
Average acc. gradient [MV/m]	60	
Structures per module	2	
Iris radius a [mm]	3.85-3.15	3.5
Tapering angle [deg]	0.04	0
Struct. length L, act. Length (flange-to-flange) [m]	0.94 (1.05)	
No. of cells	112	
Shunt impedance R [MΩ/m]	93-107	100
Effective shunt Imp. $R_{sh eff}$ [M Ω /m]	350	347
Peak input power per structure [MW]	70	
Input power averaged over the pulse [MW]	51	
Average dissipated power [kW]	1	
P _{out} /P _{in} [%]	25	
Filling time [ns]	130	
Peak Modified Poynting Vector [W/µm ²]	3.6	4.3
Peak surface electric field [MV/m]	160	190
Unloaded SLED/BOC Q-factor Q ₀	150000	
External SLED/BOC Q-factor Q _E	21300	20700
Required Kly power per module [MW]	20	
RF pulse [µs]	1.5	
Rep. Rate [Hz]	100)

R. Pompili

20 cells EuPRAXIA X-band tests

- From the 6th to the 17th of March we perform the high power test of the first EuPRAXIA@SPARC LAB X-band structure prototype at TEX
- It is a 20 cells, constant impedance, RF prototype (the real structure will be 1 m long)
- In 10 days we reach an input pulse of 35 MW, 100 ns length at 50 Hz repetition rate, that correspond to an average gradient along the structure equal to 74 MV/m and a peak gradient at the structure input of 80 MV/m.

Control Room

LLRF system

VKX8311A Klystron

Plasma module

- 40 cm long capillary $\rightarrow 1^{st}$ prototype for the EuPRAXIA facility
 - Made with special junction to allow negligible gas leaks (<10⁻¹⁰ mbar)
- Operating conditions
 - 1 Hz repetition rate (to be increased up to 100 Hz)
 - 10 kV 380 A minimum values for ionization
 - 6 inlets for gas injection. Electro-valve aperture time 8-12 ms

R. Pompili

E^{^{*}}PRA

WP15 - TDR EuPRAXIA @SPARC_LAB

A. Biagioni, V. Lollo

R&D on plasma acceleration

R. Pompili

EIPRAXIA High rep rates and capillary longevity

R. Pompili

Temperature analysis

A. Biagioni, R. Demitra, L. Crincoli (\rightarrow see talk on Thursday)

R. Pompili

SPARC_LAB experience

R. Pompili

The SPARC_LAB facility

Ferrario, M., et al. "SPARC_LAB present and future." NIMB 309 (2013): 183-188.

R. Pompili

SPARC upgrade with SABINA

Milestones

Activities with the high-brightness SPARC photo-injector

Plasma characterization

Biagioni, A., et al., Journal of Instrumentation 11.08 (2016)

Longitudinal phase-space manipulation

V. Shpakov et al. Phys. Rev. Lett. 122, 114801 (2019)

R. Pompili

Control of the energy spread

nature physics LETTERS https://doi.org/10.1038/s41567-020-01116-9

() Check for updates

Energy spread minimization in a beam-driven plasma wakefield accelerator

R. Pompili[®]¹[⊠], D. Alesini¹, M. P. Anania[®]¹, M. Behtouei¹, M. Bellaveglia¹, A. Biagioni¹, F. G. Bisesto¹, M. Cesarini[®]^{1,2}, E. Chiadroni¹, A. Cianchi³, G. Costa¹, M. Croia¹, A. Del Dotto[®]¹, D. Di Giovenale¹, M. Diomede¹, F. Dipace[®]¹, M. Ferrario¹, A. Giribono[®]¹, V. Lollo¹, L. Magnisi¹, M. Marongiu[®]¹, A. Mostacci[®]², L. Piersanti[®]¹, G. Di Pirro¹, S. Romeo¹, A. R. Rossi⁴, J. Scifo¹, V. Shpakov¹, C. Vaccarezza¹, F. Villa[®]¹ and A. Zigler^{1,5}

R. Pompili

WP15 - TDR EuPRAXIA @SPARC_LAB

Funded by the European Unior

Demonstration of FEL lasing

R. Pompili

R. Pompili

EUPRAXIA

Particle bending with plasma

- Yet another use of plasma
- The large magnetic fields produced in the plasma can be used to bend particles
 - Compactness. Large deflection angles
 - Tunability. The bending is tuned by adjusting the discharge-current
 - Low-cost solution
 - Tunable dispersion

Pompili, R., et al. Physical Review Letters 132.21 (2024): 215001.

Frazzitta, A., et al. Physical Review Accelerators and Beams 27.9 (2024): 091301.

R. Pompili

EUPRA

WP15 - TDR EuPRAXIA @SPARC_LAB

Constant field

bendina

Active bending

plasma

EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

Thanks!

R. Pompili (LNF-INFN) On behalf of the EuPRAXIA@SPARC_LAB collaboration

This project has received funding from the European Union's Horizon European end and programme under grant agreement No. 101079773

The Livingston plot

Plasma Accelerator Achievements

- Gradients up to 100 GV/m
- Acceleration >10 GeV of electron beams
- High-quality beams to deive FELs

The most demanding in terms of beam brightness, stability and control!

R. Pompili

R. Assmann

EUPR

WP15 - TDR EuPRAXIA @SPARC_LAB

Funded by the European Unio

FEL requirements

=> A poor beam quality causes an increase of L_g and a reduction of P_F M. Ferrario

- AQUA will explore the spectrum in the "water window" range
 - *i.e., between C (4.4 nm) and O (2.33 nm) K-* absorption edges
- Biological samples are mainly composed of light atoms (mostly carbon) and find their native environment in aqueous solutions → the absorption contrast between the C atoms (from sample) and the O (from water) is the highest in such window.
 - This makes possible measurements of unstained cells and viruses in their hydrated native state

Undulator parameters	AQUA	
Period (mm)	18	
Max strength (k)	1.47	
Min gap (mm)	6	
Active length (m)	19.8	
Radiation parameters	PWFA	X-band
Energy per pulse (μJ)	10	10
Wavelength tunability (nm)	4-10	4-10
Bandwidth (%)	0.3	0.3
Pulse length (fs)	15	60

Villa, et al. "EuPRAXIA@ SPARC_LAB status update." X-Ray Free-Electron Lasers: Advances in Source Development and Instrumentation VI. Vol. 12581. SPIE, 2023.

- ARIA will operate at a longer wavelengths in the VUV range
 - 50-180 nm
- It will operate in the seeded mode exploiting the High-Gain Harmonic Generation (HGHG) configuration
 - OPG-OPA Ti:Sapphire laser with fundamental wavelength 600-800 nm and 320-400 nm for the SHG
 - ~20 μ J pulse energy, ~200 fs duration
- It can support a wide range of experiments in atomic, molecular, and cluster physics, as well as solid, liquid, and gas phase materials, probe new electronic transitions well within the 7-20 eV range for classes of cluster materials such as nano-carbons and potential gap dielectrics such as metal oxides using the ultra-fast pump-probe configuration

Undulator parameters	ARIA		
	modulator	radiator	
Period (mm)	100	55	
Active length (m)	3.0	8.4	
Seeding wavelengths (nm)	320-400 + 600-800		
Seeding energy per pulse (μJ)	> 20		
Seeding length (fs)	200		
Radiation parameters	PWFA	X-band	
Energy per pulse (μJ)	200	200	
Wavelength tunability (nm)	50-180	50-180	
Bandwidth (%)	3	0.05	
Pulse length (fs)	15	100	

Villa, et al. "EuPRAXIA@ SPARC_LAB status update." X-Ray Free-Electron Lasers: Advances in Source Development and Instrumentation VI. Vol. 12581. SPIE, 2023.

Status of EuAPS (PNRR)

R. Pompili

EuAPS goals

- WP2- "Betatron radiation Source" will deliver a new Plasma based Laser driven X-rays source at INFN-LNF.
- The implementation of this WP includes
 - numerical simulations
 - optimization of the plasma target
 - design and realization of the plasma source
 - commissioning of the timing and synchronization system
 - photon diagnostics design and implementation
 - user end station design and test
- The expected outcome is a bright, compact and stable X rays source based on betatron radiation

Parameter	Value	unit
Electron beam Energy	100-500	MeV
Plasma Density	10 ¹⁸ -10 ¹⁹	cm ⁻³
Photon Critical Energy	1 -10	keV
Number of Photons/pulse	10 ⁶ -10 ⁹	
Repetition rate	1	Hz
Beam divergence	3-20	mrad

R. Pompili

Work in progress

- Layout in the SPARC bunker and connection with FLAME building
- Drawings completed
- All purchasing procedures completed
- Prototype system developed and tested
- Several challenges
 - Main issue is the pumping of 20-30 bar with repetition rate at least 1 Hz
 - The focusing parabola has to be in a 10⁻⁴ mbar environment

R. Pompili

