EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

Status of the EuPRAXIA@SPARC_LAB Technical Design Report-Part 1

C. Vaccarezza INFN-LNF

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No. 101079773

• WP15:

- D15.2 Mid-term report on TDR status for EuPRAXIA@SPARC_LAB
- M15.2 Workshop on "EuPRAXIA@SPARC_LAB machine upgrade and additional beam lines" (moved from M20, June 2024)
- Technical Design Report General Overview & Contents
- Timeline update
- Some Chapters details:
 - Civil Infrastructures
 - Machine Layout
 - Beam Physics
 - RF X-band Linac
 - Plasma Module
 - FEL & Undulator
- Conclusions

TDR General Overview

Since February 2021 the preparation of the EuPRAXIA@SPARC_LAB Technical Design Report has been submitted to the Review Committee evaluation. The RC meets twice a year (May-Jun/Dec-Nov) till completion of the TDR document.

Current Review Committee Members:

- Deepa Angal-Kalinin (UKRI STFC, UK)
- Majed Chergui (EPFL, Switzerland)
- Patric Muggli (MPP, Germany, chair)
- Marco Pedrozzi (PSI, Switzerland)
- Luigi Scibile (CERN, Switzerland)

Editorial Board (July 2024) Members

- Massimo Ferrario
- Alessandro Gallo
- Anna Giribono
- Riccardo Pompili
- Fabio Villa

TDR Contents

LNF – xx/xx Jun 16th, 2024

EuPRAXIA@SPARC_LAB

Technical Design Report

C	Contents
2	
1	Executive Summary
2	EuPRAXIA in the European Context
3	EuPRAXIA@SPARC_LAB
4	Scientific Case 15
5	Beam Physics
6	Machine layout
7	RF Photo-Injector
8	RF X-band Linac and Compressor Systems
9	Plasma Accelerating Module
10	Free Electron Lasers
11	Photon Beamlines
12	Experimental End-stations
13	Electron and Photon Diagnostics

27 Chapters now under redaction (around 30% ready).

To be finalized by first half 2025.

15	RF Systems	37
16	Timing and Synchronisation	39
17	Control System	41
18	Vacuum System	43
19	Magnets and Power Supply	45
20	Functional Safety Systems	47
21	Civil Infrastructures	49
22	Conventional Safety	51
23	Radiation Safety and Beam Dumps	53
24	Integration, Implementation and Commissioning Strategy	55
25	System Engineering	57
26	Project Cost, Timeline and Management Structure	59
27	Future Upgrodes	61

- Executive Design almost completed
- Draft delivered in June 2024
- Authorization from Fire Brigade approved.
- Tender for the verification on going to be awarded in September (3months for the execution of the verification according to the contract).
- Tender for construction to be prepared starting from the end of the year.

Courtesy of A. Falone

C. Vaccarezza EuPRAXIA-PP Annual Meeting , Elba, Italy 2024

Facility building

timeline details

Final Design

C. Vaccarezza EuPRAXIA-PP Annual Meeting , Elba, Italy 2024

• Reference Plasma Working point:

- $E = 1 \text{ GeV}, \lambda_r = 4nm, Q = 30 50 \text{ pC}$, Comb scheme w plasma module
- X-band Linac Working point

• $E = 1 \text{ GeV}, \lambda_r = 4nm, Q = 250 \text{ pC}$, Single bunch

The Basic Layout

- Baseline : Plasma acceleration operation scheme = WoP1
- Suitable for the High Charge Single Bunch operation boosted by an All-RF Linac up to 1 GeV = WoP2

www.eupraxia-pp.org

Nominal Working Point parameter list

- Driver and Witness beam are separated in a magnetic chicane downstream the plasma module.
- A short matching transfer line follows to inject the beam in the undulator

parameter	Units		
Charge before cut	pC	28.3	
Charge after cut (a.c.)	рС	26.5	
Peak current (a.c.)	kA	3	
Emittance projected a.c. (x,y)	mm mrad	0.7	
Emittance slice a.c. (x,y)	mm mrad	0.7	
Energy spread a.c (relative)		1.7x10 ⁻³	
Energy spread slice a.c.		3x10 ⁻⁴	
Rho	X10^-3	1.6	
Rho_3d	X 10^-3	1.5	
Energy emitted (25 m)	microJ	13.2	
Photon emitted (25 m)	X 10^11	2.5	
Saturation length	m	20	
Wavelength	nm	4	
Bandwidth (25 m)	%	0.2	
Size	micron	120	
Divergence	microrad	19	

A. Del Dotto, A. Giribono, M. Opromolla, V. Petrillo, S. Romeo, A.R. Rossi

RF Gun (rms) RF Voltage $[\Delta V]$ % ± 0.02 RF Phase $[\Delta \phi]$ ± 0.02 deq S-band Accelerating Sections (rms) RF Voltage $[\Delta V]$ ± 0.02 % RF Phase $[\Delta \phi]$ ± 0.02 dea X-band Accelerating Sections (rms) % RF Voltage $[\Delta V]$ ± 0.02 RF Phase $[\Delta \phi]$ ± 0.10 deg **Cathode Laser System (max)** Charge $[\Delta Q]$ ± 1 % Laser time of arrival fs ± 0.02 $[\Delta t]$ % Laser Spot size $[\Delta\sigma]$ ±1

end of 2023 data

	Witness		Driver		
	Without	With errors	Without	With errors	
	errors		errors		
Charge	30.00	30.00 ± 0.33	200.00	200.00 ± 2.00	рС
Energy	537.18	537.19 ± 0.31	539.29	539.29 ± 0.30	MeV
Energy spread	0.712	0.711 ± 0.003	0.92	0.92 ± 0.001	‰
Bunch length	19.88	19.97 ± 0.32	205.87	205.55 ± 0.87	fs
peak	1873	1643 ± 99	-	-	kA
Δt	0.494	0.494 ± 0.044	-	-	fs
E _{nx v}	0.562	0.562 ± 0.007	4.18	4.22 ± 0.15	mm mrad
σ _{x.v}	1.5	1.52 ± 0.18	5.85	5.89 ± 1.07	μm
β _{x,v}	4.3	4.5 ± 1.1	8.8	9.1 ± 3.3	mm
α _{x,y}	1.2	1.2 ± 0.25	1.65	1.65 ± 0.30	

• Errors are intended as rms quantities

Driver & Witness numerically separated on the longitudinal axes

Example: energy stability shot to shot at the plasma exit

End of 2023 results: ~ 3%

 through continuous work to optimize the working point for Linac and plasma module
to be finalized in the next 1-2 months to be compliant with the TDR delivery schedule

Sep 2024 results: ~ 1%

RF X-BAND LINAC

- ⇒ High brightness electron beam up to 1 GeV, at 100 Hz repetition rate (baseline) with a possible future upgrade at 400 Hz, single bunch;
- ⇒ S-band (2.856 GHz) injector composed by a photocathode 1.6 cells SW RF Gun and 1x 3m TW Sband structure and 3x 2m TW Sband structures;
- ⇒ X-band (11.994 GHz) booster composed by 16xTW, 0.9 m accelerating structures with a nominal gradient of 60 MV/m, 8 X band power station (25 MW, 1.5us, up to 400 Hz)
- \Rightarrow Magnetic chicane

Courtesy of D. Alesini- E. Di Pasquale

X-BAND RF MODULE

Plasma Source

Courtesy of A. Biagioni

Plasma accelerating module	Technical design (83%)	
10.1 Introduction	100%	
10.2 Plasma module design		
10.2.1 Plasma sources	70%	
10.2.2 HV-sources for plasma creation	100%	
10.2.3 Plasma discharge stabilizaiton	100%	
10.3 Plasma chamber design	20%	
10.3.1 Focusing and extraction systems	Beam physics	
10.3.2 Capillary supports and handling	70%	
10.4 Vacuum pumping system	60%	
10.5 Diagnostics		
10.5.1 Plasma diagnostics	100%	
10.5.1.1 Stark broadening technique	100%	
10.5.1.2 Interferometric techniques	100%	
10.5.2 Beam diagnostics	Beam diagnostics	
10.6 High repetition rate plasma sources	80%	
10.7 Future developments		
10.7.1 Segmented capillary	100%	
10.7.2 All-in-one capillary	100%	
10.7.3 APL collimator system	70%	
10.8 Plasma module safety system	80%	

Plasma Accelerating Module

Courtesy of A. Biagioni

Courtesy of L. Giannessi

www.eupraxia-pp.org

EUPRAXIA AQUA Undulator Model (derived from SABINA)

- The total undulator <u>magnetic length</u> considered is 20 m, i.e. 10 modules 2 m each.
- **Period length:** provide sufficient tuning range at fixed energy which allows the FEL to reach carbon and eventually nitrogen K-edge (at higher peak current/beam energy) is 18 mm.
- **Polarization:** variable polarization is an asset as it fits with the requests from the scientific case. Circular polarization ensures higher gain (about 2 m = 1 module)
- Apple X type: Substantially higher field at comparable undulator aperture = extended tuning range. Tuning range independent of polarization.
- Experience from the SABINA Undulator at LNF (KYMA).
- The target photon energy range is extended toward lower photon energies by
 - Small gap aperture (thin UV chamber walls Apple X design)
 - High undulator remanent field (high remanent field magnets are assumed – Br=1.35 T)
 - Tuning the electron beam energy

Fully symmetric (K_{max} independent of polarization)

Courtesy of L. Giannessi

- The updated timeline for the EuPRAXIA@SPARC_LAB Technical Design Report foresees its delivery by the end of 2025 that means the complete version ready for revision by June 2025.
- Since 2021 the activity has been followed by the Review Committee and more recently the Editorial Board has been charged with coordinating and harmonising the TDR document
- The readiness of the technical content is around 70-80%
- The activity is now deeply focused on the drafting of the chapters of the document