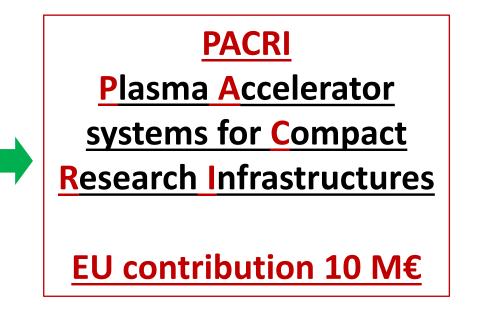


Beyond EuPRAXIA_PP: the PACRI Project

Plasma Accelerator systems for Compact Research Infrastructures

Gerardo D'Auria, Elettra – Sincrotrone Trieste

Massimo Ferrario, INFN Frascati


Leo Gizzi, CNR Pisa

Horizon Europe Work Programme 2023-2024 INFRA-2024-TECH-01-01

Development of ground-breaking RI Technologies,..... Including high tech developments for accelerators

- > Research and development of scientific new instrumentation, and methods tools for research infrastructures taking into due account resource efficiency (e.g. energy consumption) and environmental impact.
- Their technology validation and prototyping.
- Training of RI staff for the operation and use of these new solutions.
- The innovative potential for industrial exploitation of the solutions and/or for the benefits of the society.

1. Compact & efficient plasma accelerators (M. Ferrario - INFN)

With focus on the high rep-rate plasma modules, as required for the EuPRAXIA project.

2. Compact & efficient X-band technology for accelerators (G. D'Auria - Elettra)

With focus on normal conducting RF technology for linear accelerators.

3. Efficient & high repetition rate Lasers (L. Gizzi - CNR)

With focus on high repetition rate laser technology, required to drive high-gradient and high-repetition-rate Laser Plasma Acceleration (LPA) related to the above-mentioned applications.

The project was submitted beginning of March 2024

Total score 14.50 (Threshold 10.0/15.0)

Criterion 1 - Excellence Score: 5 (Threshold 3.0/5.0)

The overall objective of PACRI is to promote the development of new acceleration schemes ad innovative breakthrough technologies for accelerators, Taking energy consuption, resource efficiency, costs and environmental impact into account. **The overall objective and the specific goals are very clear and pertinent and fully aligned with the overall aim of the INFRA-TECH call as well as with the scope of the TECH-01-01 topic.....**

Criterion 2 - Impact

Score: 5 (Threshold 3.0/5.0)

The proposal outlines its expected outputs in an excellent way, including prototypes of high repetition rate plasma modules, a high efficiency klystron and high rep-rate modulator, high power high rep-rate laser systems, and open-source codes for plasma module design......

Criterion 3 – Quality and efficiency of the implementation

Score: 4.5 (Threshold 3.0/5.0)

The work plan is sound and realistic, albeit ambitious. The breakdown into 14 WPs is logicalEach WP involves multiple participants: mostly from rather different background which is beneficial for the synergy and coherence.....Milestones and deliverables are generally appropriate: however, for several tasks there is a lack of intermediate control points, such as milestones or deliverables, which makes it difficult to track the progress of certain tasks throughout the project's lifetime. There is also an occasional lack of interconnection and collaboration between separate WPs, which are not always adequately eplained......

PACRI is a collaborative effort involving 19 International Research Laboratories and

Universities, supported by 7 Industrial Partners. It is closely connected to two

ESFRI Research Infrastructures:

EuPRAXIA and the Extreme Light Infrastructure, ELI-ERIC

Project duration: 4 Years (2025-2028)

Overall project value 11 M€

10 M€ EU contribution + 1 M€ from PSI

- Further developments on high-repetition-rate plasma modules, as the one foreseen by the EuPRAXIA project, extending its scientific domain to high average brightness radiation sources with possible future applications also to high energy physics.
- Improve the performance of normal conducting technology for linacs (X-band), aiming at extending their operating capabilities up to the kHz regime with the focus on efficiency and energy consumption, boosting the diffusion of extremely compact linacs and related X-ray facilities.
- Further developments on high-power high repetition rate laser technology, to support the above-mentioned applications.

Elettra Sincrotrone Trieste	

PACRI Collaboration

25 Partners + 1 Associated Partner

19 Universities and Scientific Labs. + 7 Industries

#	Partner	Acronym
1	Elettra - Sincrotrone Trieste SCpA (Coordinator)	ST
- 2	European Organization for Nuclear Research	CERN
3	Istituto Nazionale Fisica Nucleare	INFN
4	University of Liverpool	ULIV
5	Thales-MIS	Th-MIS
6	Scandinova Systems AB	SCND
7	VDL ETG Technology & Development BV	VDL
8	СОМЕВ	COMEB
9	United Kingdom Research and Innovation	UKRI
10	Consiglio Nazionale delle Ricerche	CNR
11	Extreme Light Infrastructure ERIC	ELI-ERIC
12	Centre National de la Recherche Scientifique CNRS	CNRS
13	Thales LAS France SAS	Th-LAS
14	Amplitude	Amplitude
15	Centro de LÁSERES Pulsados	CLPU
16	Ferdinand-Braun-Institut gGmbH, Leibniz-Institut für Hoechstfrequenztechnik	FBH
17	Associacao do instituto superior Tecnico para a Investigacao e Desenvolvimento	IST
18	Università degli Studi di Roma La Sapienza	USAP
19	Heinrich-Heine-Universitaet Duesseldorf	UDUS
20	Deutsches Elektronen-Synchrotron DESY	DESY
21	The Chancellor, Masters and Scholars of the Univ. of Oxford	UOX
22	Ludwig-Maximilians-Universitaet Muenchen	LMU
23	GSI Helmholtz Centre for Heavy Ion Research	GSI
24	Università degli Studi di Roma Tor Vergata	UTOR
_ 25	SourceLAB	SourceLAB
26	Paul Scherrer Institut (Associated partner)	PSI

WP No.	Work Package		Lead Partic. Short Name	Person Months	Start Month	End month
1	Coordination and project management		ELETTRA	68	1	48
2	Scientific and industrial exploitation		ULIV	49	1	48
3	Plasma accelerator theory and simulations		IST	126	1	48
4	High repetition rate plasma structures	plasma	INFN	156	1	48
5	Plasma acceleration diagnostics and instrumentation	Pro	CNRS	206	1	48
6	High efficiency RF generator		Thales-MIS	26	1	48
7	High repetition rate modulator	nd	Scandinova	25	1	48
8	X-band RF Pulse Compressor (BOC)	_X-band	INFN	31	1	48
9	RF tests and validation		CERN	29	1	48
10	High repetition rate high power Ti:Sa amplifier module		UKRI	55	1	48
11	Efficient kHz laser driver modules for plasma acceleration		CNR	70	1	48
12	High-rep rate pump sources for laser drivers	- Lasers -	ELI-ERIC	51	1	48
13	Prototype of high average power optical compressor		Thales-LAS	40	1	48
14	Laser Driver System Architecture, transport and engineering		CNRS	68	1	48
			(Total	1000	person i	months

Elettra Sincrotrone Trieste	

	Work packages and Tasks	First Year	Second Year	Third Year	Fourth Year
	WP1: Coordination and project management	1 2 3 4 5 6 7 8 9 10 11 12 M	13 14 15 16 17 18 19 20 21 22 23 2	4 25 26 27 28 29 30 31 32 33 34 35 36 37	38 39 40 41 42 43 44 45 46 47 48
	T 1.1: PACRI general governance and technical management				
	T 1.2: Administrative management				
Elettra Sincrotrone Trieste	T 1.3: Data management				
	T 1.4: Communication				
	WP2: Scientific and industrial exploitation		M		
	T 2.1: Technology transfer strategy & networking				
	T 2.2: Dissemination				
	T 2.3: Industrial exploitation plan				
	T 2.4: Gender & jung researchers				
	WP3: Plasma accelerator theory and simulations			N	
	T 3.1: Development of a toolkit for MHD simulations				
	T 3.2: Plasma Source Design in the High-Repetition Rate Regime				
	T 3.3:Develop code for coherent rad. emission in a plasma mod. T 3.4: Develop a toolkit for simulating acc. in finite temp. plasma				
	WP4: High repetition rate plasma structures				
	T 4.1: High-repetition rate gas jet target development				
	T 4.2: Development of a high rep-rate gas cell structured target				
	T 4.3: Development of high-repetition rate plasma capillaries				
	T 4.4: Development of high rep-rate advanced plasma sources				
	WP5: Plasma acceleration diagnostics and instrumentation				
	T 5.1: Trans. diagnostics for high rep-rate for plasma accelerators				
	T 5.2: Long. diagnostics for high rep-rate for plasma acceleration				
	T 5.3: Long. diagnostics for high rep-rate for plasma acceleration				
	WP6: High efficiency RF generator			M	
DACDI Constante ale ant	T 6.1: High efficiency X-band klystron design				
PACRI Gantt chart	T 6.2: Klystron prototype production				
	WP7: High repetition rate modulator				
	T7.1: High voltage modulator design				
	T7.2: Prototype production				
54 Deliverables	WP8: X-band xRF Pulse Compressor (BOC)			M	
	T8.1: BOC design				
	T8.2: BOC prototype construction				
M 40 Milestones	WP9: RF systems power tests and validation			M	
	T9.1: Set up of the RF test area				
	T9.2: RF systems power tests and validation				
	WP10: High repetition rate high power Ti:Sa amplifier module	M		1	
	T10.1:Operat.&char. of a 20-100 Hz Yb:YAG p. laser for Ti:Sa ampl.				
	T10.2: Dev.&char. a 100Hz Nd:YAG p. laser for a Ti:Sa ampl				
	T10.3: Dev. a conc. design of a Ti:Sa amplifier at 20Hz and beyond				
	WP11: Efficient kHz laser driver modules for plasma acceleration	M			
	T11.1: kHz Thin disk drive pulse for P-MOPA				
	T11.2: Post compression of kHz ps pulses				
	T11.3: Broadband amplification in Thulium doped gain media				
	T11.4: kHz pulsed diode laser pump demonstrator				
	WP12: High-rep rate pump sources for laser drivers	M	M	1	
	T12.1: Upgrade of DUHA pump laser for incr. average power op				
	T12.2: Evaluation of optical coatings in HAP, high energy systems				
	T12.3: Investigate an OPCPA amplifier at 100 Hz				
	T12.4: Diode laser pump unit design for 20100 Hz implem.				
	WP13: Prototype of high average power optical compressor				
	T13.1: Mod. of therm. load on grating under vac. and validation				
	T13.2: Exper. charact. of dielectr. grat. samples for kW beamline				
	T13.3: Compressor design with dielectric grating for kW beamline				
	WP14: Laser Driver System Architecture, transport and eng.	M	M	4	
	T14.1: System engineering				
G. D'Auria 25-09-2024	T14.2: Systems required for operation				
—	T14.3: Focal spot stabilisation				

WP1: Coordination and project management (Elettra):

To ensure, through suitable actions and measures, a timely and complete achievement of the objectives of all project WPs, an efficient exploitation of the results, maximal benefits for science and society, and the fulfilment of all obligations towards the European Commission and other stakeholders.

- Task 1.1: General governance and technical management
- Task 1.2: Administrative management
- Task 1.3: Data management
- Task 1.4: Communication

WP2: Scientific and industrial exploitation (ULIV):

To follow, steer and promote the scientific development of PACRI for existing and future Research Infrastructures. It will also monitor, steer and promote the industrial exploitation of PACRI technologies in European industry.

- Task 2.1: Technology transfer strategy & networking
- Task 2.2: Dissemination
- Task 2.3: Industrial exploitation
- Task 2.4: Gender & joung researchers

WP3: Plasma accelerator theory and simulations (IST):

To develop, in the EuPRAXIA context, software tools to perform long-time scale (ps-ms) simulations to model the temporal evolution of discharge-based plasma sources in 3D geometries

- Task 3.1: Development of a toolkit for hydrodynamic simulations
- Task 3.2: Design in the High-Repetition Rate Regime
- Task 3.3: Development of codes for radiation emission in a plasma module
- Task 3.4 Development of a toolkit for simulating acceleration in finite temperature plasma

WP4: High repetition rate plasma structures (INFN):

To design and test high repetition rate plasma components for the EuPRAXIA project

- Task 4.1: high-repetition rate Gas jet target development
- Task 4.2: Development of a high-repetition rate gas cell structured target
- Task 4.3: Development of high-repetition rate plasma capillaries
- Task 4.4: Development of high-repetition rate advanced plasma sources

WP5: Plasma Accelerator diagnostics and instrumentation (CNRS):

To design and test high repetition rate plasma components for the EuPRAXIA project

- Task 5.1: Transverse diagnostics for high repetition rate for plasma accelerators
- Task 5.2: Longitudinal diagnostics for high repetition rate for plasma acceleration
- Task 5.3: Development of virtual instrumentation and AI driven control systems

WP6: High efficiency RF generator (Thales-MIS):

With the specific goal of designing a high-efficiency, high-repetition-rate X-band klystron, making a prototype and testing it at full power.

- Task 6.1: High efficiency X-band klystron design
- Task 6.2: Klystron prototype production

WP7: High repetition rate modulator (Scandinova):

With the specific goal of designing and building a high repetition rate Solid State Modulator (SSM) capable of driving the high efficiency X-band klystron prototype.

- Task 7.1: Modulator design
- Task 7.2: Prototype production

Klystron main operating parameters

RF peak power:	25 MW	
Pulse length:	from 2.5 μs to 3.5 μs	
RF efficiency:	> 50%	
Pulse rep. rate:	400 Hz*	
*With the possibility of extending it up to 1 kHz		

Modulator main operating parameters

Pulse peak power:	≥ 50 MW
H.V. pulse length:	from 2.5 μs to 3.5 μs
Pulse rep. rate:	400 Hz (up to 1 kHz)

WP8: RF pulse compressor (BOC) (INFN):

With the specific goal of designing and building an innovative high repetition rate RF pulse compressor (BOC), clumped (not brazed),

- Task 8.1: BOC design
- Task 8.2: BOC prototype construction
- Task 8.3: BOC low power RF characterization.

WP9: High power RF tests and validation (CERN):

With the specific goal of testing and validating, at CERN, in operational environment, the whole RF power plant, the high efficiency klystron, the SSM and the BOC.

- Task 9.1: Set up of the RF testing area
- Task 9.2: RF systems power tests

In addition, where possible, training of technical staff in the use of the new systems will be organised during the installation and power tests of prototypes.

WP10: High repetition rate high power Ti:Sa amplifier module (UKRI):

The goal of this work package is to develop a scalable testbed for a Ti:Sapphire (Ti:Sa) amplifier operating from 20 to 100 Hz and assess its operational performance.

- Task 10.1: Operation and characterization of a 20-100 Hz Yb:YAG pump laser for a Ti:Sa amplifier.
- Task 10.2: Development and characterization of a 100 Hz Nd:YAG pump laser for a Ti:Sa Amplifier.
- Task 10.3: Developing a conceptual design of a Ti:Sa amplifier at 20 Hz and beyond.

WP11: Efficient kHz laser driver modules for plasma acceleration (CNR):

The goal of this WP is to develop components for kHz ultrashort pulse laser drivers for plasma accelerators.

- Task 11.1: kHz thin disk drive pulse for P-MOPA.
- Task 11.2: Post compression of kHz ps pulses.
- Task 11.3: Broadband amplification in Thulium doped gain media.
- Task 11.4: kHz pulsed diode laser pump demonstrator.

WP12: High-rep rate pump sources for laser drivers (ELI-ERIC):

The goal of this work package is to address challenges shared by Ti:Sapphire and OPCPA pump lasers, specifically pump lasers based on Yb:YAG.

- Task 12.1: Upgrade DUHA pump laser for increased average power operation.
- Task 12.2: Evaluation of optical coatings in high average power, high energy systems.
- Task 12.3: Investigate an OPCPA amplifier at 100 Hz.
- Task 12.4: Diode laser pump unit design for 20...100 Hz implementation.

WP13: Prototype of high average power optical compressor (Thales-LAS):

To develop technology for high repetition rate, high average power optical compression for Chirped Pulse Amplification lasers using advanced grating technology.

- Task 13.1: Modelling of thermal load impact on grating under vacuum and validation with existing systems.
- Task 13.2: Experimental characterization of dielectric grating samples with density power compatible with kW beamline.
- Task 13.3: Compressor design based on dielectric grating technology for kW beamline.

WP14: Laser driver system architecture, transport and engineering (CNRS):

This WP provides a complete path to the overall architecture of a laser driver that incorporates the components developed in WP10 to WP13, to deliver a high quality laser pulse to the focal point (plasma).

- Task 14.1: System engineering.
- Task 14.2: Systems required for operation.
- Task 14.3: Focal spot stabilisation.

> Grant Agreement Preparation Phase

- Grant Signature expected by the end of October 2024
- Consortium Agreement in Preparation

For more info:

Cecilia Blasetti (Project Management Office)

cecilia.blasetti@elettra.eu

We are also working on:

> The project Web page and logo

Project starting date: 01-03-2025

Thanks to all the persons who worked for the preparation and submission of the project.

Special thanks go to Massimo, Leo and Cecilia for their commitment and fundamental support, and to Regina Rochow who worked with us on a earlier version of the PACRI project (CREATE).

There is a lot of work ahead of us, but I hope that PACRI can make a significant contribution to the development of new accelerators.

Thanks for your attention

