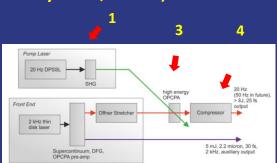


Brief overview of the current status

ELI-Beamlines / ELI-ERIC

PROGRESS during 2024 relevant to EuPRAXIA

- ☐ High-power laser development (L2-DUHA) aiming 100 Hz
- Laser beam transport from the L2-laser-hall to the E5-experimental-hall
- Progress with relevant technology:
 - LUIS setup (compact Laser-Plasma Accelerator)
 - Discharge plasma setup + Plasma diagnostics
 - Laser-plasma Acceleration at ELI-Beamlines
 - "Betatron" radiation at ELI-Beamlines



L2-Laser (DUHA / L2-hall): dedicated to LPA-LUIS program

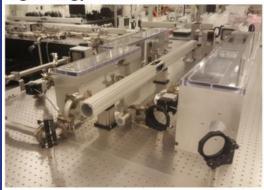
L2-laser system would be the laser for LPA-FEL (EuPRAXIA-Phase#1 / ELI-Beamlines) setup

- Initial target parameters:100 TW, 820nm, 25 fs, 20 Hz
- Direct increase of repetition rate <u>to 50 Hz possible</u> with current equipment.
- Clear path to 100 Hz available.
- All materials have been delivered and are ready for use (crystals, optics, optomechanics, control systems, diodes)

10J Pump Laser

- Temporally shaped pulse generator and regenerative pre-amplifier completed, booster pre-amplifier running at 100mJ, ramping to 0.5J.
- All components for 10J multipass are in place and pre-aligned, pump diodes tested and installed
- <u>Cryo</u> system **installed** and undergoing tests

Broadband front end



- 1mJ, 50fs, 2kHz <u>demonstrated</u> at 2.2μm (mid-IR development paused to focus on 100TW seed)
- Offner Stretcher <u>aligned</u> with NIR output
- Current focus on improving NIR seed stability and energy

Current Status / by 08.2024

3

High Energy OPCPA

- All OPCPA and SHG crystals are delivered and ready for installation.
- Pump transport to OPCPA is pre-aligned

Compressor

- Compressor chamber <u>installed</u> along with injector chamber.
- Final optics for compressor expected to be delivered in Dec 2024.
- Compressor is <u>connected</u> to beam transport
- First compression of OPCPA output expected 08/2025.

Tyler Green (ELI-Beamlines)

2

www.eupraxia-pp.org

L2-Laser (DUHA / L2-hall): dedicated to LPA-LUIS program

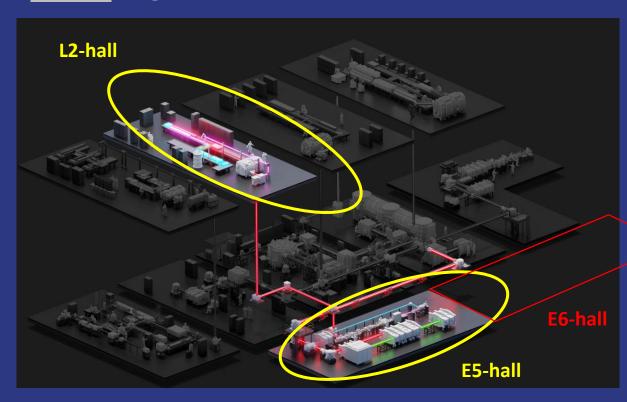
Pump Laser and OPCPA	Status	Expected completion
Cryogenic system	Defects found after initial installation repaired and full system tests currently underway.	09/2024
Pump laser front end	Seed laser and regenerative amplifier complete , booster pre-amplifier running at 100 <u>mJ</u> , currently ramping up to 0.5 J	10/2024
Commissioning of pump laser	Pump laser pre-aligned ; now awaiting finalized cryo- cooling	11/2024
OPCPA pre- alignment	All components installed , pre-alignment of pump telescopes and signal path underway	12/2024
OPCPA amplification	Amplification possible after pump laser and BBFE complete	03/2025
Broadband front end (BBFE)	Status	Expected completion
Seed available	NIR OPCPA to be completed and passed through prealigned stretcher	11/2024
Mid-IR output	Work on this set aside to prioritize main amplifier seed branch. $ \\$	12/2024
Compressor	Status	Expected completion
Optics	Most delivered , some still in production	12/2024
Alignment and first compression	Possible after OPCPA completion (03/2025) and arrival/installation of all compressor optics	08/2025

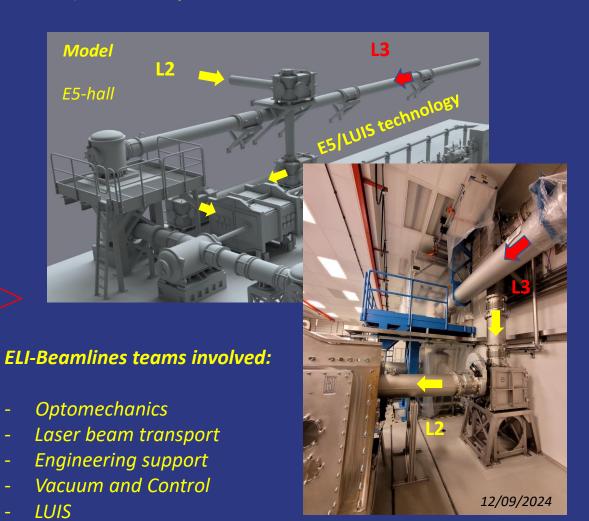
The cryogenic test is in progress:
Current result → 120 Kelvin on Crystal

L2-laser system readiness for the LPA-FEL (EuPRAXIA Phase#1)

Compressed L2-beam to E5-LUIS: 1st experimental campaign 09/2025

Tyler Green (ELI-Beamlines)

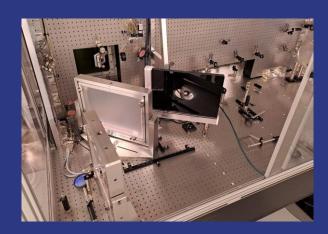

L2-DUHA schedule



L2-DUHA laser beam transport (L2-to-E5/LUIS) development

2024: integration of L2 & E5 halls - DONE

L2-laser beam transport to E5-LUIS: <u>installed</u> L2-to-E5 BT Vacuum system: <u>tested</u> Optics will be placed (aligned) 2Q-2025



LPA-LUIS technology commissioning: current status

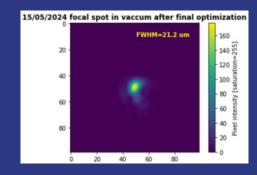
LUIS technology is based on the LUX (Hamburg) setup

Alexander Molodozhentsev (ELI-Beamlines)

L3-HAPLS cropped laser beam

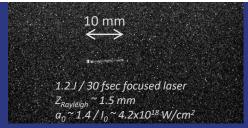

May (w19-20) 2024 L3-LUIS experimental campaign:

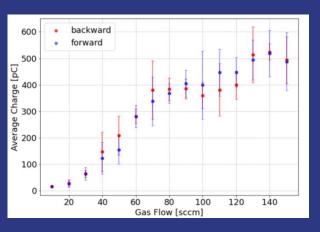
NO back-reflection issues


around 2000 high-power shots were performed (1856 shots of the 10J-energy of the full beam and 90 shorts of the 12J-energy of the full beam) to make the 1st high-power measurements, dedicated to the commissioning of the LUIS technology.

Sapphire capillary (gas-cell)

Precise alignment of entire setup


L3-laser beam in focus

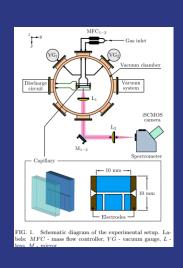


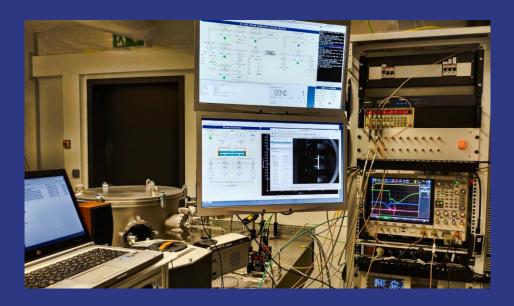
L3-laser pointing stability on OAP: ~ 1.15/0.91 mrad (H/V)

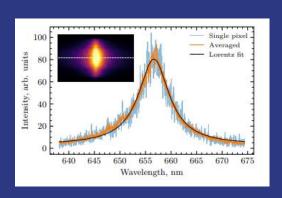
Plasma channel formation in Capillary

Capillary length	Capillary diameter	Gas flow in each inlet (SCCM)
10 mm	$500~\mu\mathrm{m}$	20-200 SCCM
Gas pressure	Helium gas density in the plateau	N ₂ concentration
(mbar)	(n_{He})	(C_N)
\sim 15-50 mbar	$\sim (0.3 - 1.2) \times 10^{18} \text{ cm}^{-3}$	0.4-10 %

1st measurements of the e-beam charge (Turbo-ICT)






LUIS plasma components: current status

Alexander Molodozhentsev (ELI-Beamlines)

Electrical discharge plasma formation in Capillary
LUIS-Laboratory at ELI-Beamlines
Fully operational setup (discharge + gas distribution + control system)

Emission spectroscopy

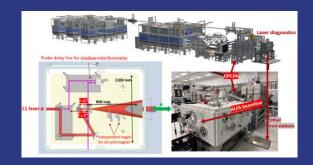
Test of technology applicable for laser wave-guiding and for active plasma lens
Development of the plasma diagnostics (Emission spectroscopy + Interferometry)

<u>High repetition rate regime</u> (up to 100Hz)

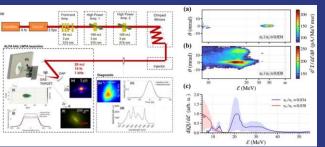
Modelling * and measurements **

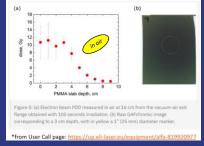
Recent publications:

- * P.Sasorov et al, Physical Review Research 6, 013290 (2024) / doi:10.1103/PhysRevResearch.6.013290
- ** K.Kruchinin et al, under review for publication


LPA electron beam at ELI-Beamlines: current status

Gabriele Grittani (ELI-Beamlines)


ALFA kHz Laser-Plasma Accelerator → 50 MeV / 1 kHz

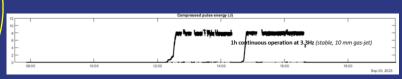

L1-laser: 30mJ (100 mJ) / 1 kHz / 15 fs

2024: Installation of new bigger vacuum chamber (final version / L1-hall)

ALFA-LPA: First demonstration of LWFA with scalable kHz laser technology (OPCPA) ALFA-Medical: Irradiation of samples with % uniform dose distribution

Setup is open to users (through "USER-CALL")

Recent publications: Lazzarini, Phys. Plasmas 31, 030703 (2024)


ELBA Electron Accelerator → 800 MeV / 3.3 Hz

Multi-GeV electron beams and PW-class photon-electron collider (3-10 Hz)

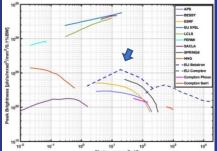
Based on the **L3-HAPLS** laser system

> 30k consecutive laser shots on target (8J, 300TW) @3.3Hz (< 2 hours net time)</p>

ELBA user assisted commissioning results (G. Sarri, G. Grittani et al.) / March 2024

Setup is open to users (through "USER-CALL")
Coming user-oriented campaign (November 2024)

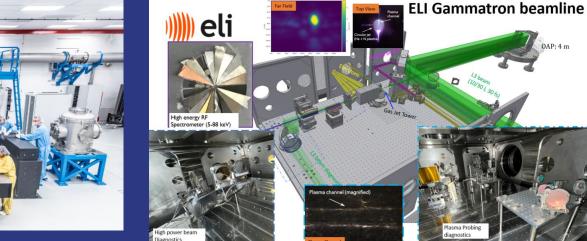
Next USER-CALL (Sep.25/2024): https://eli-laser.eu/news/5th-eli-user-call-set-to-launch-on-25-september/

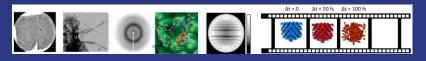


Betatron radiation at ELI-Beamlines: current status

Udhabb Chaulagain (ELI-Beamlines)

L3-HAPLS laser




Commissioning of the technology was performed <u>successfully</u> in April 2024:

- Plasma channel formation (gas-jet)
- 1st electron beam and betatron radiation

- Compact synchrotron-like X-ray source (1-50 keV)
 - ✓ ~10 fs, micron source size, collimated
 - ✓ Expected photon flux 10¹¹ photons/shot
 - ✓ 10% flux variation & 10% energy variation
 - ✓ Energy tunable and Partially Polarised X-ray source!
- ✓ Equipped with electron and X-ray diagnostics
- ✓ **Pump beam** (800 nm, 400 nm or 266 nm)
- ✓ Open to users from Q3-2024 (USER-CALL: September 25, 2024)

Chaulagain et al., Photonics 2022, 9(11), 853 (2022)

User assisted commissioning campaign - <u>now</u>: w38-w39 / 2024

THANK YOU for YOUR ATTENTION

ELI-Beamlines TEAM / ELI-ERIC