EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

WP8 - Overview of activities

Jorge Vieira (IST), Henri Vicenti (CEA)

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No. 101079773

WP8 members and goals

Objective: Steer the scientific and technical progress on Theory & Simulations of Plasma Accelerator and related application. The WP should also define the computing power needed to perform a full 3D numerical model of the Distributed research facility.

Institution	Role
IST	Leader
CEA	Co-leader
GSI	Participant
INFN	Participant
CNR	Participant
DESY	Participant
CNRS	Participant
ELI	Participant
CLPU	Participant
UCLA	Participant
Swiss FEL	Participant

Overview

- **Deliverable** D8.1 (M12) Report on structures to be funded from national/bilateral/european level for simulation & theory
 - Definition of the Centre of Excellence (CoE) for theory and simulations
- Deliverable D8.2 (M24) Report on results achieved in the field of theory and simulations
 - LWFA modelling studies for potential site 2 candidates (ELI and CNR see talk by Paolo Tomassini Friday)
 - Start-to-end modelling (Talk by Maxence Thevenet)
 - Realistic laser modeling in simulations (Talk by Francesco Massimo)
 - A novel hybrid-target injector for high-charge laser-driven electron acceleration (Talk by Luca Fedeli)
 - Arbitrary injection of laser pulses (Talk by Jorge Vieira)
- Deliverable D8.3 (M46) Report on status of EuPRAXIA simulated performances

Start-to-end modelling chain

Element in chain

Laser

Conventional beam lines

Gas jet

Plasma profile

Plasma accelerator

Free electron laser

Start-to-end modelling chain

Element in chain	Code/algorithm		
Laser	GSA algorithm		
Conventional beam lines	Several codes: TaceWin, Trace 3D, MADX, Astra, GPT, Elegant, G4BL		
Gas jet	TBD		
Plasma profile	Openfoam, Ansys/Fluent		
Plasma accelerator	Osiris, Smiley, FBPIC, EPOCH		

Free electron laser

Osiris, Genesis, Simplex

J. Vieira and Henri Vicenti. WP8 progress report.

Element in chain	Code/algorithm	Input	
Laser	GSA algorithm	Laser fluence	
Conventional beam lines	Several codes: TaceWin, Trace 3D, MADX, Astra, GPT, Elegant, G4BL	6D phase-space (e.g., from PIC)	
Gas jet	TBD	TBD	
Plasma profile	Openfoam, Ansys/Fluent	none identified	
Plasma accelerator	Osiris, Smiley, FBPIC, EPOCH	6D beam phase-space, laser e.m. profile, gas jet and plasma profile	
Free electron laser	Osiris, Genesis, Simplex	6D beam phase-space from PIC	

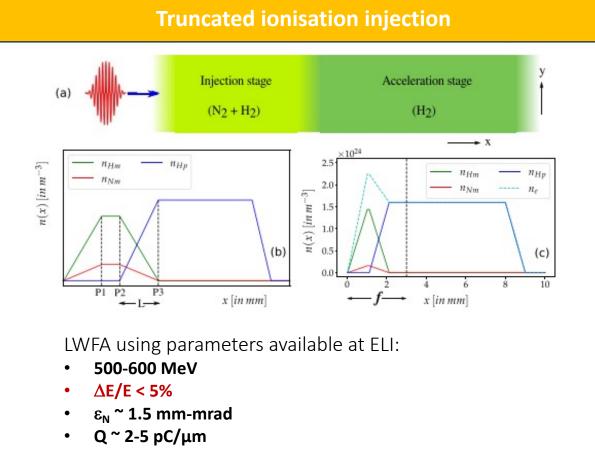
J. Vieira and Henri Vicenti. WP8 progress report.

EUPRAXIA

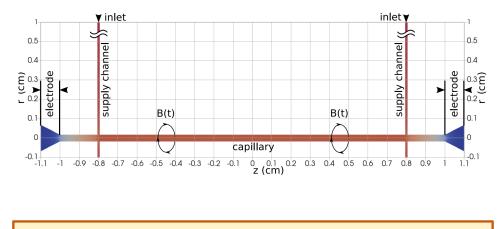
Start-to-end modelling chain

Element in chain	Code/algorithm	Input	Output
Laser	GSA algorithm	Laser fluence	Full spatiotemporal laser profile
Conventional beam lines	Several codes: TaceWin, Trace 3D, MADX, Astra, GPT, Elegant, G4BL	6D phase-space (e.g., from PIC)	6D phase-space
Gas jet	TBD	TBD	TBD
Plasma profile	Openfoam, Ansys/Fluent	none identified	plasma spatial profile
Plasma accelerator	Osiris, Smiley, FBPIC, EPOCH	6D beam phase-space, laser e.m. profile, gas jet and plasma profile	Phase-space of accelerated bunch
Free electron laser	Osiris, Genesis, Simplex	6D beam phase-space from PIC	Radiation intensity evolution

Overview


- Deliverable D8.1 (M12) Report on structures to be funded from national/bilateral/european level for simulation & theory
 - Definition of the Centre of Excellence (CoE) for theory and simulations
- Deliverable D8.2 (M24) Report on results achieved in the field of theory and simulations
 - LWFA modelling studies for potential site 2 candidates (ELI and CNR see talk by Paolo Tomassini Friday)
 - Start-to-end modelling (Talk by Maxence Thevenet)
 - Realistic laser modeling in simulations (Talk by Francesco Massimo)
 - Reduced modelling of LWFA and high-fidelity ionisation physics (Talk by Francesco Massimo)
 - Arbitrary injection of laser pulses (Talk by Jorge Vieira)
- Deliverable D8.3 (M46) Report on status of EuPRAXIA simulated performances

EPOC simulations show feasibility of compact LWFA for FEL applications at ELI


)))) eli

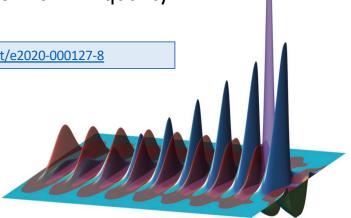
Srimanta Maity et al., PPCF 66 No 3 Feb 7 (2024) **DOI** 10.1088/1361-6587/ad238e

Capilary repetition rate

- **Main goal**: to determine recovery time of the initial neutral gas distribution because it sets the highest possible rep rate.
- 3D MHD simulation of plasma dynamics during capillary discharge
- Simulation of plasma and gas dynamics between electric current pulses

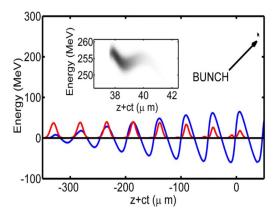
<u>Conclusion</u>: Our parameters allow 10 kHz repetition rate

CNR-INO



The <u>RE</u>sonant <u>Multi-Pulse</u> Ionization <u>Injection</u> (REMPI) scheme

Motivation: Within the EuPRAXIA project we aim at generating 4.5/5GeV bunches with FEL quality


R. Assmann et al., "EuPRAXIA Conceptual Design Report" The European Physical Journal Special Topics **229**, 3675–4284 (2020); https://doi.org/10.1140/epjst/e2020-000127-8

Bunch	dE/E SLICE	ε _n SLICE	Q	l _{peak}
specifications - GOAL:	<0.1%	<0.1 mm mrad	>30 pC	>2kA

- This is a <u>very challenging</u> working point for a plasma-based accelerator.
- We developed a laser-driven scheme, the Resonance Multi-Pulse Ionization Injection scheme (REMPI [1])
- The REMPI scheme combines the most advanced concepts conceived to date in LWFA to deliver high quality electron beam to drive an X-ray FEL.

[1] P. Tomassini et al., "The resonant multi-pulse ionization injection," Physics of Plasmas 24, 103120, 2017.

Overview

- Deliverable D8.1 (M12) Report on structures to be funded from national/bilateral/european level for simulation & theory
 - Definition of the Centre of Excellence (CoE) for theory and simulations
- Deliverable D8.2 (M24) Report on results achieved in the field of theory and simulations
 - LWFA modelling studies for potential site 2 candidates (ELI and CNR see talk by Paolo Tomassini Friday)
 - Start-to-end modelling (Talk by Maxence Thevenet)
 - Realistic laser modeling in simulations (Talk by Francesco Massimo)
 - Reduced modelling of LWFA and high-fidelity ionisation physics (Talk by Francesco Massimo)
 - Arbitrary injection of laser pulses (Talk by Jorge Vieira)
- **Del**iverable D8.3 (M46) Report on status of EuPRAXIA simulated performances

Conclusions

• LWFA driven FEL modelling for second site candidates

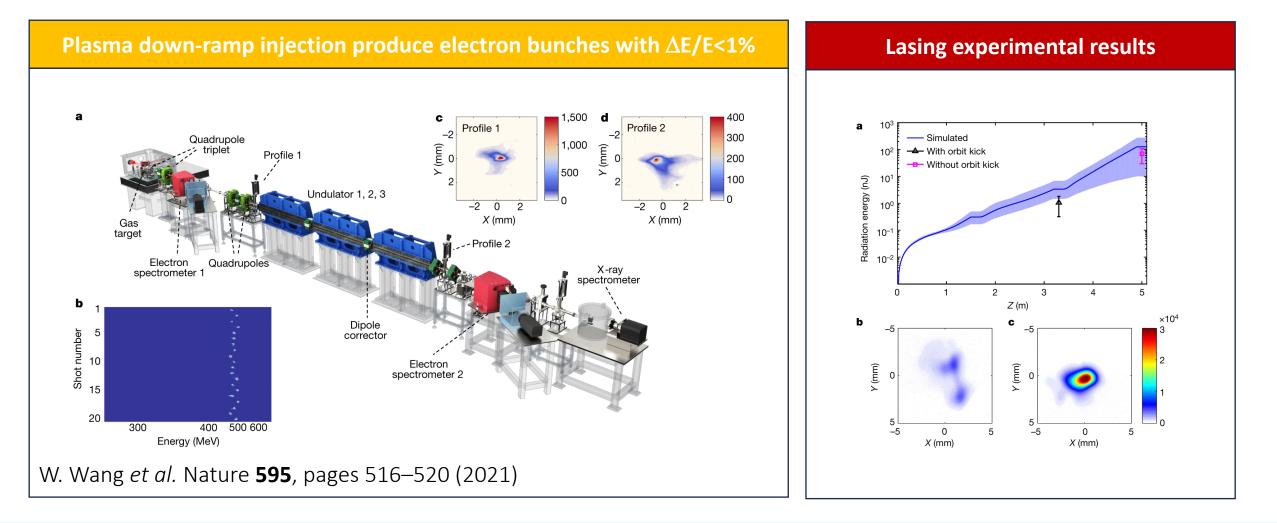
- Second-site tailored electron acceleration studies
- Simplified resonant multi-pulse ionisation injection: focus on ultra-short electron bunch production. Energy spread not yet compatible with FEL lasing in simulations
- Ionisation truncated injection: need to further reduce energy spread to obtain lasing

• New computing tools and concepts:

- Newly developed computational algorithms allow numerical modelling realistic lasers
- Novel concept for superradiant emission in LWFA/PWFA

• Additional future steps:

- Adding realism to numerical modelling
- Superradiant radiation source concepts


• Science issues

- The energy spreads for second site candidate simulations are not yet at the level compatible with FEL lasing
- Need to include role of non-ideal conditions

EUPRAXIA 27 nm FEL lasing using LWFA beams was demonstrated

Proof of principle experiments of basic EuPRAXIA second site concepts exist. Main challenge: meet beam quality criteria (energy spread and emittance) to obtain lasing at higher electron energies.

