EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

WP11: Update on schemes for secondary particle and photon sources at EuPRAXIA

Gianluca Sarri, Queen's University Belfast EuPRAXIA_PP Annual Meeting 2024

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No. 101079773

Pilot applications

Flagship Science Goals:

Flagship Science Goal 1: free-electron laser (FEL) X-rays

 10^9 - 10^{13} photons per pulse, 0.2 nm to 36 nm, 0.4 fs duration

Flagship Science Goal 2: betatron X-rays

 10^{10} photons per pulse, energy of 5 – 18 keV

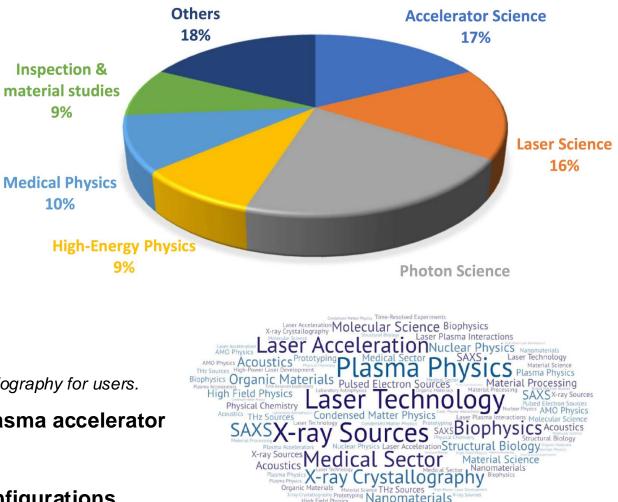
Flagship Science Goal 3: low-energy positron beams

energies 0.5MeV - 10MeV, 10⁶ positrons per pulse, 20–90 ps duration

Flagship Science Goal 4: electron and positron beams

energies 100MeV - 5 GeV for high-energy-physics-related R&D

Flagship Science Goal 5: Compton scattering (ICS) source

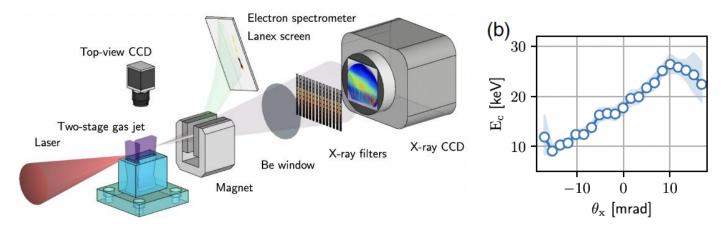

narrow-band spectrum for precision nuclear physics and highly penetrative radiography for users.

Flagship Science Goal 6: multi-stage high repetition-rate plasma accelerator

in the GeV range to users from accelerator science.

Flagship Science Goal 7: Novel schemes of pump probe configurations

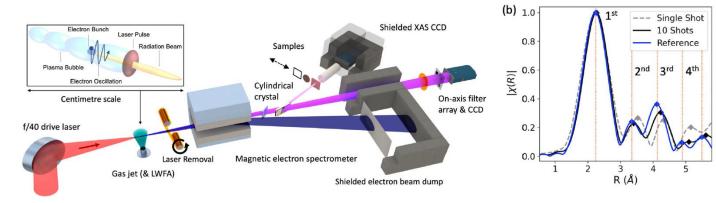
and ultra-precise timing will be researched, feeding back into laser science



Betatron sources: novel schemes

Novel schemes for the generation and applications of betatron radiation

Streaked betatron x-rays, using a curved wakefield accelerator



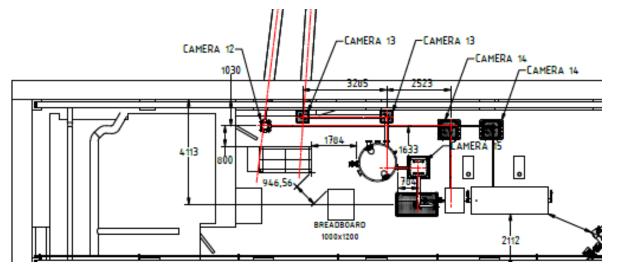
- Possibility of angularly streaking betatron x-rays
- On-shot diagnostic of electron acceleration through the plasma
- Intrinsic spatiotemporal correlation, which makes it a promising tool for single-shot pump-probe applications

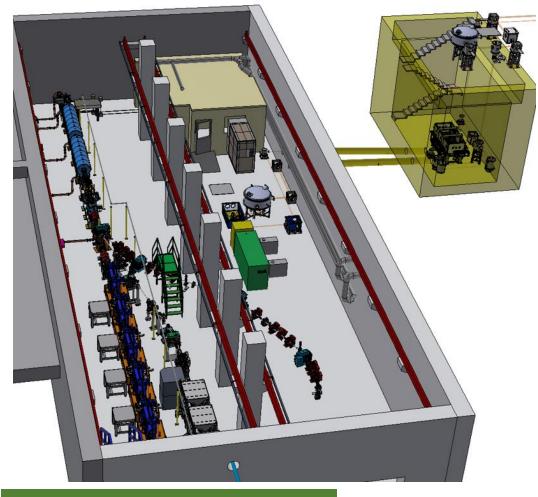
Y. Ma et al., Phys. Rev. Lett. 132, 225001 (2024)

Single-shot x-ray absorption spectroscopy

E[•]**PRA** IA

- Absorption profile around the copper K-edge over a 250 eV spectral window in a single shot
- Direct measurement of the local atomic structure and unique to the species of a sample.
- Information on the ion temperature, any sample compression or phase changes

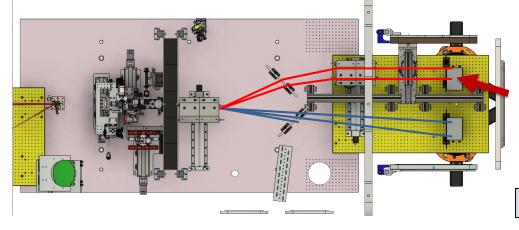

B. Kettle et al., Communication Phys. 7, 247 (2024)

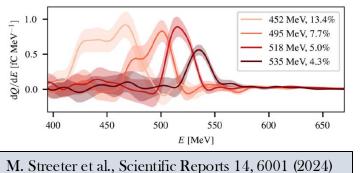

Betatron sources: EuAPS

22 M€ investment for the EuPraxia Advance Photon Sources (EuAPS)

Parameter	Value	unit
Electron beam Energy	100-500	MeV
Plasma Density	10 ¹⁷ -10 ¹⁹	cm ⁻³
Photon Critical Energy	1 -10	keV
Number of Photons/pulse	10 ⁶ -10 ⁹	
Repetition rate	1-5	Hz
Beam divergence	3-20	mrad

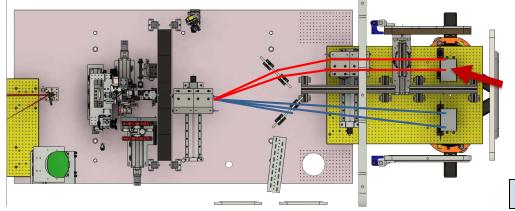
First photons summer 2025

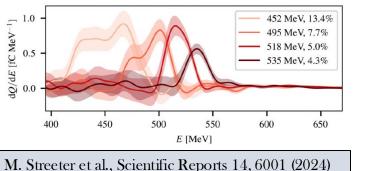

G. Sarri: EuPRAXIA_PP Annual Meeting 2024

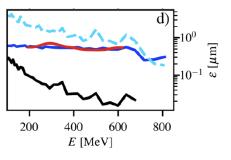


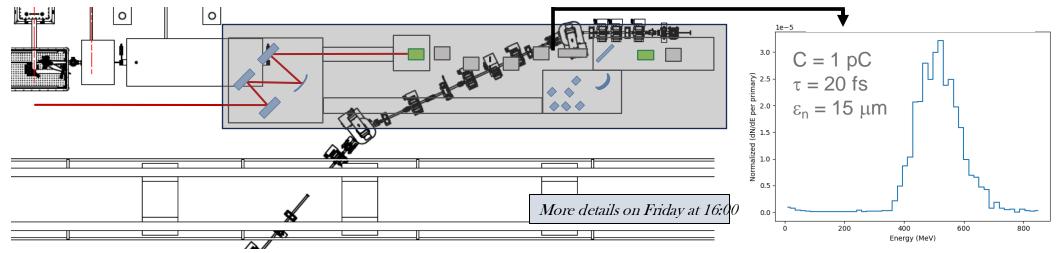
High-energy positron beams

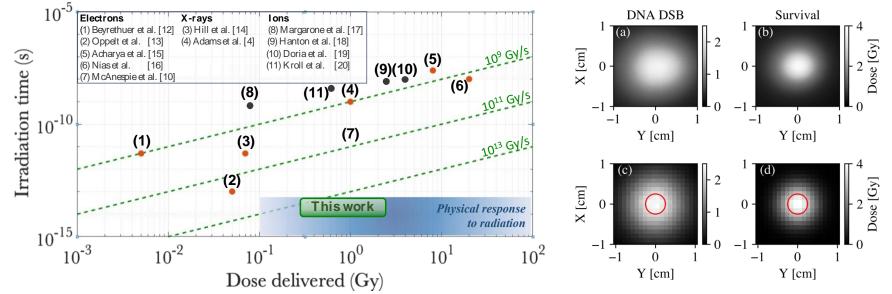
Demonstration of laser-driven high-quality narrow-band positron beams





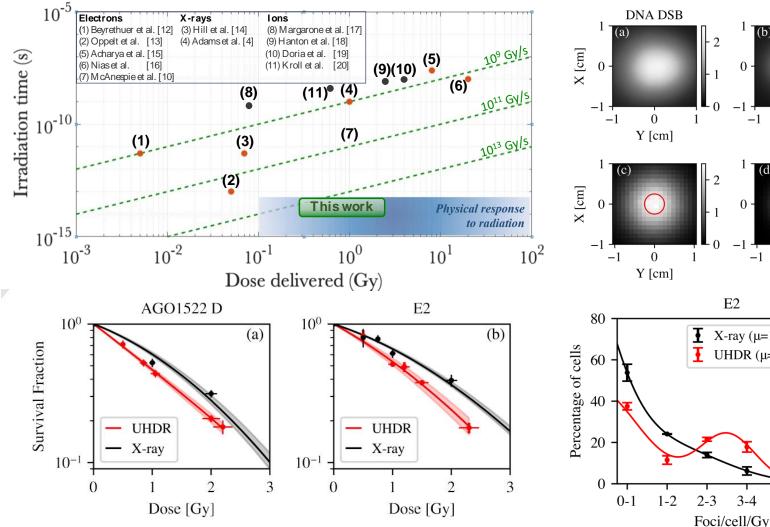

High-energy positron beams

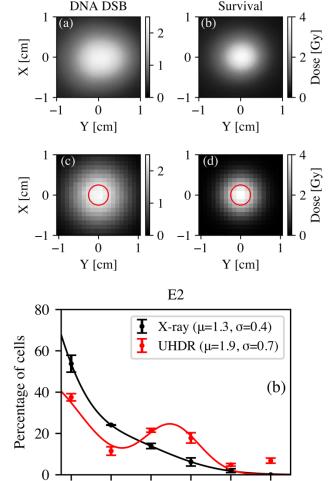

Demonstration of laser-driven high-quality narrow-band positron beams


Proof-of-principle design @ LNF (QUB and LNF)

Radiobiological applications

Femtosecond-scale electron beams allow accessing a novel regime of radiobiology


- Broadband nC electron
 beams can deliver multi-Gy
 doses in a single shot.
- Dose-rates >10¹³ Gy/s
- Cm-scale irradiation areas
- High degree of spatial uniformity


E^û**PRA**

Radiobiological applications

Femtosecond-scale electron beams allow accessing a novel regime of radiobiology

5-6

4-5

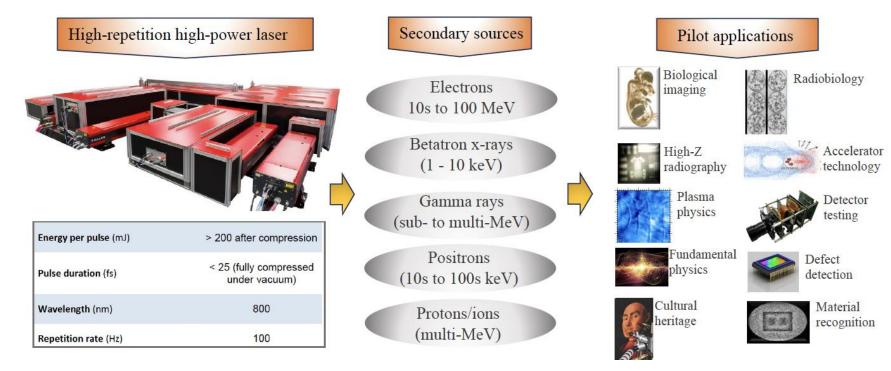
- Broadband nC electron beams can deliver multi-Gy doses in a single shot.
- Dose-rates >10¹³ Gy/s •
- Cm-scale irradiation areas
- High degree of spatial uniformity

- Novel cell response in pilot • experiments.
- High RBE •
- Reduced tumor resistance
- Higher complexity of damages

C. McAnespie et al., arXiv:2309.06870v1 (2024)

E^uPRA IA

Significant national investment on laser systems at high repetition rate


Queen's University Belfast (UK)

EPSRC

100 Hz, 200 mJ, 20 fs laser system to operate as a user facility Operational at the start of 2027

Istituto Nazionale di Ottica (Italy)

PNRR funding for a 100 Hz, 1 J, 20 fs system

Excellent opportunities for R&D systematic studies for high repetition rate operations

Additionally to FEL, EuPRAXIA can provide a wide range of particle and photon beam parameters:

	E	∆E/E	t	σ _x	θ _x	Ν
X-rays (Betatron)	few - 10s keV	100%	~ 20 fs	μ m	10 mrad	> 10 ⁹
Gamma-rays (Compton)	few – 10s MeV	~5 – 10%	~ 20 fs	10 μm	2 – 5 mrad	10 ⁷ - 10 ⁸
High-energy positrons	500 MeV	5-10%	~ 30 fs	10 μm	5 mrad	10 ⁷
Low-energy positrons	0.5 - 3 MeV	10%	~ 10 ps	100 μm	10 mrad	10 ³
Electrons (narrowband)	5 GeV	<1%	~ 20 fs	μ m	mrad	2x10 ⁸
Electrons (broadband)	up to 5 GeV	~ 100%	~ 50 fs	2-5 μm	3 -5 mrad	10 ¹⁰

Open questions (for everybody to get involved!):

- 1. Design beamlines for the delivery of these parameters (e.g., Eu_COLL, Eu_APS)
- 2. Are there any specific parameters (or others...?) that would be particularly interesting?
- 3. Design suites of diagnostics and experimental capabilities for user end-stations

PLEASE FILL AND SPREAD THE USER SURVEY!

https://surveys.infn.it/index.php/718177

EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

Thank you for your attention!

Gianluca Sarri

g.sarri@qub.ac.uk

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No. 101079773