EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS



# Reduction of Projected Energy Spread with a Dielectric Wake Field Structure

**Evan Ericson** 





This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No. 101079773







Near-GeV Electron Beams at a Few Per-Mille Level from a Laser Wakefield Accelerator via Density-Tailored Plasma, Ke, et al.







Prospects for free-electron lasers powered by plasma-wakefield-accelerated beams, Galetti, et al.

Demonstration of Large Bandwidth Hard X-Ray Free-Electron Laser Pulses at SwissFEL, Prat, et al.















Inherently synchronized with witness beam





#### **Chirping for RF accelerator**



#### Dechirping for plasma accelerator



Evan Ericson, EuPRAXIA-PP Annual Meeting 2024







Measurement procedure:

- 1. Passive structure gap is fully opened to limit its effect
- 2. TDS is used to get the longitudinal phase space of the beam sent into passive structure
- **3.** TDS is turned off
- 4. Passive structure gap is gradually closed
- 5. Dipole & screen measure energy of beam coming out of the passive structure
- 6. Process is repeated for three bunch lengths (76 fs, 38 fs, 16 fs), 300 images total







#### Measurement procedure:

- 1. Passive structure gap is fully opened to limit its effect
- 2. TDS is used to get the longitudinal phase space of the beam sent into passive structure
- 3. TDS is turned off
- 4. Passive structure gap is gradually closed
- 5. Dipole & screen measure energy of beam coming out of the passive structure
- 6. Process is repeated for three bunch lengths (76 fs, 38 fs, 16 fs), 300 images total

F



Evan Ericson, EuPRAXIA-PP Annual Meeting 2024

# 5 mesh elements per σ produces accurate wake potentials

www.eupraxia-pp.org





**E**<sup><sup>•</sup></sup>**PRA**<sup>×</sup>IA



- 1. Source
- 2. Boundaries
- 3. Electromagnetic fields

#### are represented in the simulation





Less than a tenth of the structure needs to be simulated to obtain accurate wake potentials







### Wake potential does not change when including terms above index 45























Evan Ericson, EuPRAXIA-PP Annual Meeting 2024



## Conclusion



- We have demonstrated the manipulation of the longitudinal phase space of beams from an RF accelerator using a wakefield structure
- I think we should use wakefield structures to control the energy spread of plasma particle accelerators





Screen position

Intensity

4.0

Evan Ericson, EuPRAXIA-PP Annual Meeting 2024





### **EXTRA SLIDES**

Evan Ericson, EuPRAXIA-PP Annual Meeting 2024

www.eupraxia-pp.org

15



### SwissFEL & EuPRAXIA



| Parameter              | SwissFEL            |
|------------------------|---------------------|
| Length                 | 740 m               |
| LINAC frequency        | 5.7 GHz (C-band)    |
| Repetition rate        | 100 Hz              |
| Energy                 | up to 6.1 GeV       |
| Bunch charge           | 10 – 200 pC         |
| Trajectory jitter      | < 10% of beam size  |
| Relative energy jitter | ~ 10 <sup>-4</sup>  |
| Arrival time jitter    | < 10 fs             |
| Slice emittance        | 200 nm (for 200 pC) |
| Bunch length           | < 1 fs – 50 fs      |











### SwissFEL & EuPRAXIA



| Parameter              | SwissFEL            | EuPRAXIA [*]         |
|------------------------|---------------------|----------------------|
| Length                 | 740 m               | 150 m                |
| LINAC frequency        | 5.7 GHz (C-band)    | 11.9942 GHz (X-band) |
| Repetition rate        | 100 Hz              | ~ 50 Hz              |
| Energy                 | up to 6.1 GeV       | 1 – 1.2 GeV          |
| Bunch charge           | 10 – 200 pC         | 30 – 50 pC           |
| Trajectory jitter      | < 10% of beam size  | -                    |
| Relative energy jitter | ~ 10-4              | -                    |
| Arrival time jitter    | < 10 fs             | -                    |
| Slice emittance        | 200 nm (for 200 pC) | 500 nm               |
| Bunch length           | < 1 fs – 50 fs      | 10 fs                |



EuPRAXIA Conceptual Design Report, Assmann, et al.





Presented by A Biagioni at EuPRAXIA-DN School April 2024

[\*] Presented by C Welch at EuPRAXIA-DN School April 2024







Wed 15-02-2023 17:51:18

4 kA



Wed 15-02-2023 17:21:31





| Parameter                          | Value            |
|------------------------------------|------------------|
| half-gap, a                        | 0.25 mm – 1.5 mm |
| Length, L                          | 1 m              |
| Width, w                           | 15 mm            |
| Dielectric thickness, d            | 0.4 mm           |
| Alumina Permittivity, $\epsilon_r$ | ~ 10             |















For gap = 0.5 mm, structure produces wake with slope of -26 MV/pC/m/mm For 2\*1 m structure, 200 pC bunch: Bunches with -10.4 MV/um chirp can be dechirped









### **Possible solutions**





Tunable Plasma-Based Energy Dechirper, D'Arcy, et al.





Longitudinal Phase-Space Manipulation with Beam-Driven Plasma Wakefields, Shpakov, et al.



Energy spread minimization in a beam-driven plasma wakefield accelerator, Pompili, et al.



Longitudinal phase space synthesis with tailored 3D-printable dielectric-lined waveguides, Mayet, et al.

Energy-Spread Preservation and High Efficiency in a Plasma-Wakefield Accelerator, Lindstrøm, et al.