EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

WP9 – Considerations on Undulators

WP9 – RF, Magnets & Beamline Components
F. Nguyen (ENEA)
Elba Annual Meeting on September 24th, 2024

This project has received funding from the European Union's Horizor Europe research and innovation programme under grant agreement No. 101079773

Undulators: technology ranking

Magnets inside VC → no polarization

Optimal performance

Improved B but increased complexity

Better performance

Superconducting

Highest B and SC electromagn. coils

Best performance

Good performance

AQUA: Soft-X ray SASE FEL – Water window

- Target wavelength 3-4 nm @ 1 GeV: relatively short period required (12-20 mm)
- Total available length ~ 25-30 m \leftarrow \rightarrow linac floor constraints: matching section, beam diagnostics and beam dump
- Hypotheses:
 - Optimize magnetic length/available length filling factor
 - Make sure gain length shorter than 1 undulator module length
 - 60-80 cm intra-undulator sections: Quads, BPMs, correctors, phase shifters, alignment diagnostics

Variable polarization undulator for AQUA **E**^t**PR**^A**XI**A

Advanced Planar Polarized Light Emitter-X

Pipe ext. diam. (mm)	5.6
Piper inner diam. d (mm)	5.0
Wedge cut (mm)	2.8
φ aperture (mm)	6.0
B max (T) (in LP)	0.935
K _{max} (in LP)	1.572
K _{max} (in CP)	1.111
max λ_0 (nm) (@ 1 GeV)	5.25

SABINA APPLE-X Undulator

Source of Advanced Beam Imaging for Novel Applications Italian Regional Call (PI: Lucia Sabbatini)

> THz user facility @ $\lambda \sim$ 10-100 μ m – INFN-LNF Operating at low energy e-beam - 30-100 MeV

Purchased from KYMA after the tender:

Three APPLE-X modules ← → 1.8 M€ Each module 1.3 m long, 55mm period —> 650 k€/module —> 500 k€/meter

- NdFeB
- Circ./Linear pol.
- $-\lambda_u 55 mm$
- Br 1.22 T
- Min gap 5 mm
- 22 periods
- Kmax 3.4 (CP), 4.8 (LP)
- Length 1.35 m
- 3 modules

6.3

STOL ANK

- Magnetic studies and design performed by A. Petralia (ENEA)
- Undulator realization and mechanical structure by KY
- Detailed inspection performed at the KYMM factory
- All 3 modules already on site \rightarrow learn magnetic errors in view of AQUA

F. Nguyen – Elba Annual Meeting September 24th, 2024

www.eupraxia-pp.org

Lessons learned from the SABINA APPLE-X

* * * * * * * Funded by the European Union

Thanks to the Holographic Interferometry & Fibre Optic Sensors (HIFOS) Laboratory at ENEA we measured the APPLE-X mechanical structure deformations → negligible B field impact! A diffraction grating is produced by the refraction index variation of the fiber core (FBG Sensors) → any movement generates wavelength spectrum modification

APPLE-X module tested for

E^[•]**PR**^[•]**K**IA

- Temperature dependence over a dynamic range of 3 °C
- Magnetic forces: gap phase variations opening. Sensors were used in two different ways:
 - 1. as **strain measurement**, by gluing the fiber fully adhered to the surface of the magnet holder-plates;
 - 2. as **gap measurement** devices, by placing the sensors between adjacent plates.
- No hysteresis or distortions <u>independent</u> of a gap macroscopic movement were observed → max wavelength shift of 0.2nm observed by gap sensor;
- Max wavelength shift of 0.12nm over 2.7°C/15 hours

I. Balossino, A. Selce, A. Polimadei, M. Del Franco, A. Petralia M. Caponero, L. Giannessi, A. Vannozzi, L. Sabbatini & myself

<u>TUP220-THB @ FEL2024</u> <u>THPS21 @ IPAC2024</u>

Planar SCU prototype from FNAL

NbTi prototype to be deployed upstream of	Per
the APPLE-X modules	Be
To be delivered from FNAL to INFN as a	FE
result of equipment exchange	Der

F. Nguyen – Elba Annual Meeting September 24th, 2024

Period	16	mm
Beam stay clear	5	mm
FEL wavelength	4	nm
Peak field on axis at 5 mm beam stay clear	1.5	Т

<u>One year delay</u> wrt the schedule:

- Prototype completed → tested during 2024
- Vacuum vessel in final stages of manufacturing
- Thermal shield in procurement
- Assembly to be completed not before September 2024

Courtesy of Cristian Boffo

Undulator activities at ELI-ERIC

LUIS: coherent regime

Courtesy of Alexander Molodozhentsev

Plans based on the novel L2-DUHA laser system (200TW/20-100 Hz):

- Demonstration of an LPA driven SASE-FEL at beam energy = 350 MeV, within an undulator module 4m long, next in line → seeded FEL
- Compact FEL operation in the "water window" at beam energy = 1.2 GeV

Parameter	Unit	HPMU/ Swiss-FEL Aramis type [14]	SCU [16]
Undulator period	mm	15	13
Undulator gap	mm	5.5	5.2
Remanent/pole magnetic field	Tesla	1.38	2.12
On-axis magnetic field	Tesla	0.75	1.03
Undulator parameter	-	1.06	1.26
Average transverse beta-function in Undulator	m	8.9	6.4

PBS_CODE	PBS_MULTIPLICITY	TOTAL Cost	-	PROPORTIONAL_COST	
6. FEL 1 and FEL 2		1	39450000	39450000	
6.1. Undulators 1 and 2		1	28190000	28190000	2x16 holical 13mm
6.1.1. Undulator units		32	24960000	780000	
6.1.1.1. Cryomodule		1	650000	650000	NDTI UNQUIALORS
6.1.1.2. Power supply set		1	100000	100000	
6.1.1.3. Magnet and Cryostat instrumentation		1	30000	30000	
6.1.2. End unit		4	800000	200000	
6.1.3. Beam Instrumentation		1	2430000	2430000	
6.1.3.1. Beam Current Transformer		2	40000	20000	
6.1.3.2. Cavity Beam Position Monitor		34	680000	20000	
6.1.3.3. View Screen		2	30000	15000	
6.1.3.4. Polarix		2	1600000	800000	
6.1.3.5. Arrival Monitor		1	40000	40000	
6.1.3.6. Beam Loss Monitor		2	40000	20000	
6.2. Afterburners 1 and 2		1	7200000	7200000	2×3 APPLE-X
6.2.1. Afterburner units		6	7200000	1200000	19mm undulators
6.3. FEL1 & FEL2 Vacuum System		1	1440000	1440000	
6.3.1. Vacuum Pumps and Connecting Elements		36	720000	20000	
6.3.2. Vacuum Instrumentation System		36	720000	20000	
6.4. FEL1 & FEL2 Cryo System		1	2500000	2500000	
6.4.1. Cryoplant and Ancillaries		1	2500000	2500000	
6.5. FEL1 & FEL2 Control System Integration		1	20000	20000	
6.5.1. Control system		1	20000	20000	
Courtesy of Carlo Rossi (CERN) – beginning of 2020	D'Aur	ia, G., Adli, E.,	Nguyen	, F. et al. The CompactLigh	t Design Study

F. Nguyen – Elba Annual Meeting September 24th, 2024

EUPRAXIA

www.eupraxia-pp.org

Eur. Phys. J. Spec. Top. **233**, 1–208 (2024). https://doi.org/10.1140/epjs/s11734-023-01076-0

⁹

Conclusions

- Undulator decisions on the 1st site: APPLE type technologies for variable and selectable polarization FEL experiments
- One planar NbTi SCU prototype module to be deployed in collaboration with Fermilab
- LPA 2nd site example case: ELI-ERIC plans to operate a water-window FEL, driven by 1.2 GeV beam energy, with SCU modules
- Undulators drive the facility cost \rightarrow the final choice of the undulator technology shall depend on the particular application \rightarrow specific facility budget, timeframe and wishlist

Thank you for your attention!

EuPRAXIA-PP Consortium

F. Nguyen – Elba Annual Meeting September 24th, 2024

www.eupraxia-pp.org

EuPRAXIA-PP Structure

Acknowledgements

• EuPRAXIA Preparatory Phase

This project has received funding from the European Union's Horizon Europe research and innovation programme under Grant Agreement No. 101079773. It is supported by in-kind contributions by its partners and by additional funding from UK and Switzerland.

• EuPRAXIA Doctoral Network

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement no. 101073480 and the UKRI guarantee funds.

This publication has been made with the co-funding of European Union Next Generation EU.

2) ARIA: VUV seeded HGHG FEL beamline for gas phase

EuPRAXIA@SPARC_LAB: undulator costs

AQUA	Q	Unit Cost (k€)	Cost (k€)
Undulator	10	1700	17000
Phase shifters	9	150	1350
Vacuum Section	10	10	100
Quadrupole	10	15	150
Q. Power supply	10	15	150
Diag.chamber	10	50	500
lon pump	10	15	150
BPM	10	15	150
Screen	10	12	120
CCD	10	15	150
Corrector	10	5	50
C. Power supply	10	10	100
Total			19970

<u>Disclaimer</u>: very preliminary cost values, subject to significant variations

ARIA has no granted funds yet

Courtesy of Luca Giannessi

ARIA	Q	Unit Cost (k€)	Cost (k€)
Seed Laser	1	. 1200	1200
Optics/supports	1	400	400
Modulator	1	600	600
Radiators	4	800	3200
Phase shifters	3	150	450
Vacuum Section	5	25	125
Quadrupole	5	5 15	75
Q. Power supply	5	5 15	75
Diag.chamber	5	50	250
lon pump	5	5 15	75
BPM	5	5 15	75
Screen	5	5 12	60
CCD	10	15	150
Corrector	5	5 10	50
C. Power supply	10) 10	100
Total			6885

ARIA baseline layout

Undulators for ARIA

ARIA Seed Radiator Undulators

Main features:

- variable gap, variable phase for adjustable polarization (EPU) (six motors)
- $\lambda_u = 55.2 \text{ mm}, Np = 42, L_u = 2.4 \text{ m}$
- working gap: 10 ÷ 32 mm

Similar to FERMI FEL-1 radiators built by KYMA in 2009-2010 for FERMI FEL-1

Modulator Rad	liators
▶ <mark></mark> +{}{ +{ +{}}}}}}}}}}	
Dispersive section	
	A (1:5)
ST CAL	Main Physical Specifications: Phase error σ_{Φ}
	 Trajectory offset error
	 Trajectory tilt error
EL-1 radiators	 Peak-to-peak field error ∆B/B
000 2010 fer FEDMI	 Integrated Quadrupole (N/S)

Integrated Sextupole (N/S)

- < 5 º rms < 20 µm rms
- < 20 µmmins
- < 25 µrad rms
- < 0.5% rms < 100 G
- < 100 G
- < 100 G/cm

Courtesy of Bruno Diviacco