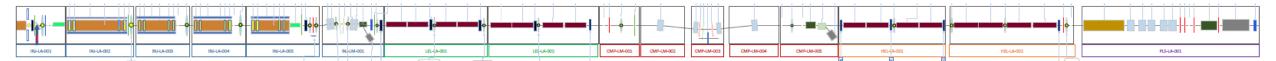
EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

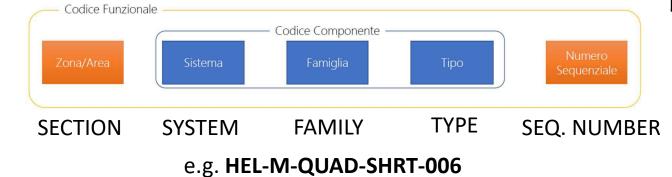
WP9 – Magnets

Lucia Sabbatini & Alessandro Vannozzi – INFN-LNF EuPRAXIA_PP Annual Meeting, 23-27.09.2024

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No. 101079773


We report the ongoing work of INFN-LNF magnet group on the design of the magnets for **EuPRAXIA@SPARC_LAB**:

- functional layout & list of magnets
- recent experience on the design of:
 - magnets for the gun
 - solenoids
 - permanent magnets for plasma section
 - air dominated steerers
- work in progress on the other magnets
- upgrade of the magnetic measurements laboratory


Functional layout & list of magnets

ΤΥΡΕ	SECTION	QTY	NOTES	ΤΥΡΕ	SECTION	QTY	NOTES	ΤΥΡΕ	SECTION	QTY	NOTES
SOLEN.	INJ (GUN)	1		QUADRUPOLES	INJ (GUN)	2	normal + skew embedded in sol.	STEERERS	INJ (GUN)	2	1 w. BPM
	INJ	4	on acc. sections		INJ	4	3 w. steerer		INJ	8	on acc. sects., inside solenoids
	INJ	4	Laser Heater chicane		LEL	3	3 w. steerer		INJ	5	w. BPM
DIPOLES	СМР	4	Compressor chicane		СМР	8	2 w. steerer		INJ	3	w. BPM & QUAD
	PLS	5	Permanent magnets		HEL	6	4 w. steerer		LEL	3	w. BPM & QUAD
	INJ/CMP	2	Spectrometers		PLS	5	Permanent magnets		СМР	2	w. BPM & QUAD
									HEL	4	w. BPM & QUAD

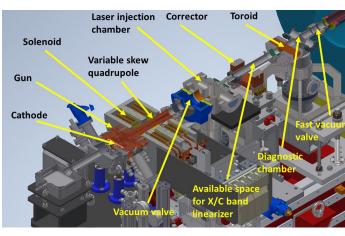
Naming convention:

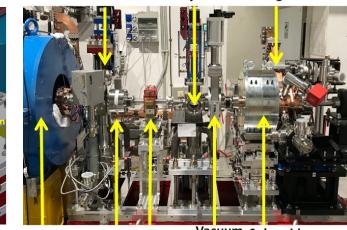
Magnets for the gun

Rf gun

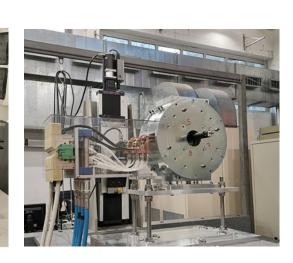
The SPARC_LAB photo-injector has been recently replaced. The new one integrates:

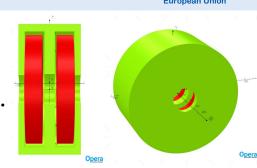
- ✓ a **solenoid** for emittance growth compensation with remote control of the transverse position.
- ✓ a **normal** and a **skew quadrupole** with variable polarity, embedded in the solenoid, for tuning the x-y emittances and compensating for residual transverse beam spot asymmetries.


Laser


injection

 \checkmark a **corrector** magnet for trajectory optimization and beam energy measurements.


Diagnostic

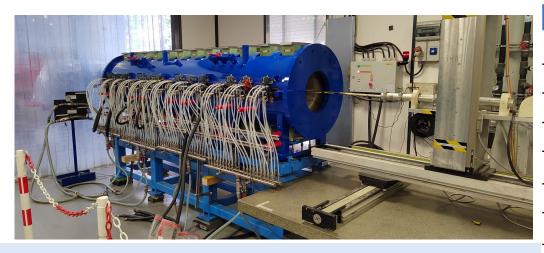

chamber

toroid corrector Vacuum Solenoid LINAC valve

	Simulated
Bmax in ++ Config.	3 943 G
Bmax in +- Config.	3 629 G
Yoke Material	St.37
IB on Axis	0.062 6 Tm
IFQ	4E-5
Good Field Radius	30 mm
FS on Axis in +- Conf.	$0.0155 \mathrm{T}^{2m}$
Bmax on Cathode	8.5 G
Number of Turns	
per Coil	136
Cooling	Water cool
Conductor Dim.	5x5/bore 3 mm
Water Pressure Drop	3 bar
Water Flow Rate	4.2 l/min
Water ΔT	25 °C
Nominal Current	
in ++/+- Config.	182/192 A
Nominal Voltage	35 V
Inductance	35 mH
Resistance	191 mΩ

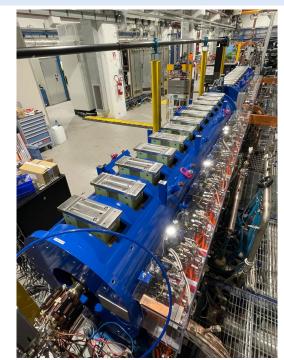
Alesini D. et al. "The new SPARC LAB RF photo-injector" 13th Int. Particle Acc. Conf. IPAC2022, doi:10.18429/JACoW-IPAC2022-MOPOMS019 Vannozzi A. et al., "Design and realization of new solenoids for high brightness electron beam injectors", 12th Int. Particle Acc. Conf. IPAC2021

Solenoids

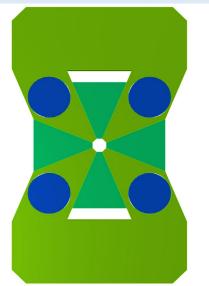


In January 2024 the SPARC_LAB solenoids have been replaced:

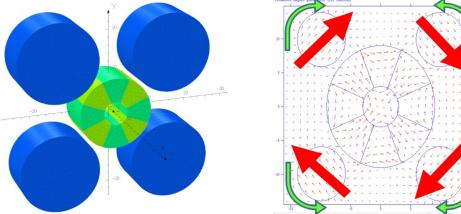
- **Solenoids** are designed to surround the first two S-band accelerating structures, where velocity bunching RF compression takes place.
- Alignment of the magnetic axis: the required tolerance is 140 μm (i.e. the axis is contained in a cylindrical surface of radius 70 μm relative to the alignment reference frame).


www

- **Mechanical design**: each one of the 12 coils has a dedicated support for position adjustment and a set of fiducials.
- Measurements & alignment campaign: performed at SigmaPhi.
- The solenoids are currently working on SPARC and a similar solution is going to be implemented on EuPRAXIA@SPARC_LAB.


Lucia Sabbatini, EuPRAXIA-PP Annual Meeting 2024

PARAMETER	VALUE	PARAMETER	VALUE
Quantity	2	Maximum current (A)	190
Number of coils	12	Maximum voltage – series of 3 coils (V)	100
Bmax in ++ config. (G)	1800	Inductance – series of 3 coils (mH)	13
Integrated Bz on axis (Tm)	0.5273	Maximum pressure drop (Kpa)	200
Integrated field homog. in ++ config	5E-4	Maximum total water flow (m3/h)	3.6
Good Field Radius (mm)	30	Inlet waer temperature (°C)	32
Length (mm)	3000	Max. magnetic axis misalignement (µm)	70
Max field at 300mm (G)	20		



- In the recent past, the magnet design group has deal with PMQs for plasma wake field based experiments at SPARC_LAB test facility.
- For COMB experiment, a design of tunables PMQs [1] based on an optimization and scaling of QUAPEVA PMQs[2]
- For External-Injection experiment (EXIN) proposal at SPARC LAB More challenging requirements in terms of higher gradients and tunability have been achieved with a new design.
- Both the designs are based on a fixed part of Halbach array and rotating magnetized cylinders who can tune the gradient depending on their angular position.
- This will be the baseline for Eupraxia PMQs for beam injection and extraction from the plasma module

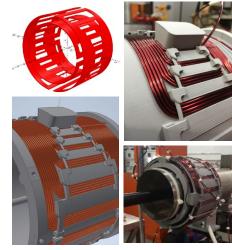
PMQ cross section for EXIN experiment

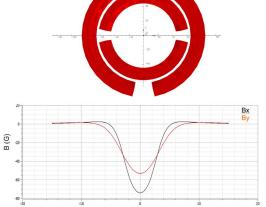
-10		DESIG FOR COMB	DESIGN FOR EXIN
	Grad and tuning	480 ± 50 T/m	270 ± 90 T/m
	Internal bore aperture	6 mm	10 mm
 	Dimensions (WxHxL)	125x200x17 mm	45x45x20 mm

3D view of PMQ for COMB experiment

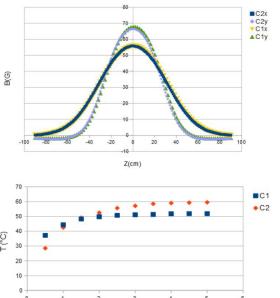
PMQ cross section for COMB experiment

[1] Vannozzi et al. "New Tunable High Gradient Permanent Magnet Quadrupole for Plasma Wake Field Acceleration at SPARC_LAB" 2020 J. Phys.: Conf. Ser. 1596 012009 [2] F. Marteau, et al., Variable high gradient permanent magnet quadrupole (QUAPEVA), Appl. Phys. Lett. 111, 253503 ; doi: 10.1063/1.4986856


Air dominated steerers


INFN-LNF team has extensive experience in the design, manufacturing and testing of air dominated beam steeres:

- \checkmark Magnetic design with Opera.
- ✓ 3D support designed and printed @LNF (windings commissioned to firm): ideal for specific geometries, or where space is limited or where multiple components need be assembled together (e.g. diagnostics).
- \checkmark Different prototypes steerers have already been realized and are currently used on SPARC.
- ✓ Magnetic, electrical and thermal measurements performed @LNF.

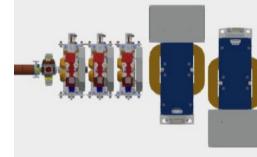


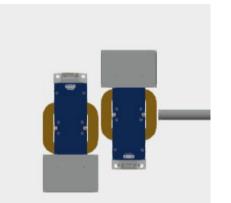
Frontal View

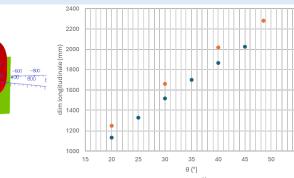
Del Franco et al. "3D printed beam correctors", 15th Int. Particle Acc. Conf. IPAC2024 Selce A. et al. "Intra-undulators magnets for the SABINA THz FEL line: magnets design, manufacturing and measurements", 15th Int. Particle Acc. Conf. IPAC2024

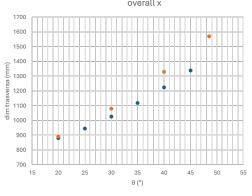
www.eupraxia-pp.org

Work in progress

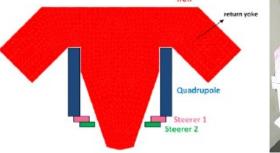



Funded by the overall European Union


Dump dipole

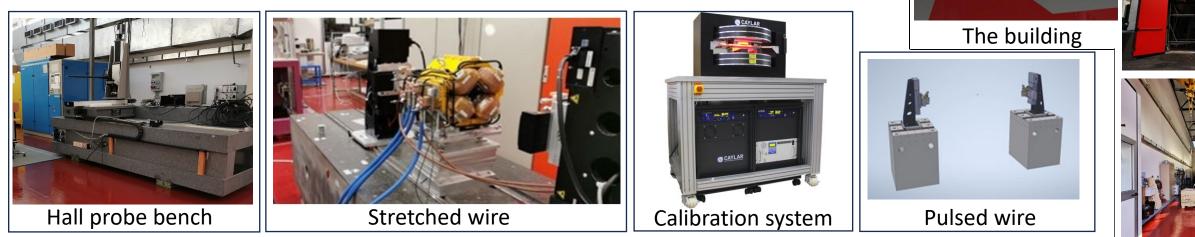

- Geometric constraint given by the building.
- Parametric preliminary design in order to fix the deflection angle.
 Laser chicane dipoles
- Preliminary magnetic design completed

MAIN PARAMETERS	VALUE
Energy (MeV)	250
Gap (mm)	30
Deflection angle (mrad)	235
Magnetic Length (mm)	250
В ₀ (Т)	0.87
Overall length (mm)	340



Combined quadrupole + steerer

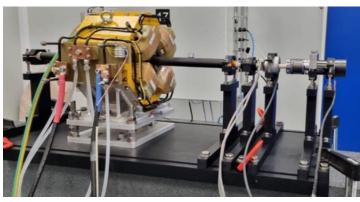
• Studying different configurations (images from literature)


Upgrade of LNF magnetic measurements laboratory

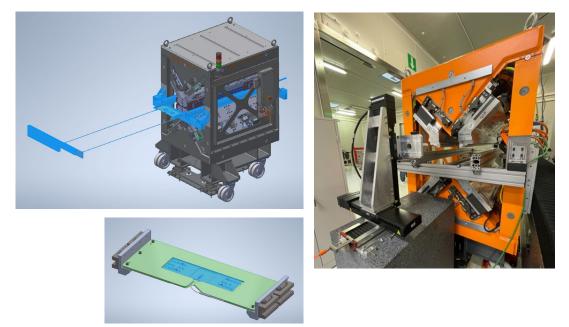
The electrotechnical eng. group

In the last few years, we have been upgrading the laboratory thanks to the external funded projects **LATINO** (cofunded by Regione Lazio) and **IRIS** (funded by PNRR program):

- \checkmark civil engineering
- ✓ new personnel (technicians & technologist)
- $\checkmark\,$ upgrade of existing instruments and development of new benches


Sabbatini L. et al. "Upgrading of the INFN-LNF magnetic measurements laboratory" 15th Int. Particle Acc. Conf. IPAC2024 Vannozzi V. et al. "INFN – LNF Magnetic Measurement Laboratory Status and Upgrade", IMMW 2024 Rossi L. et al. "IRIS – A new distributed Research Infrastructure on Applied Superconductivity", IEEE Transactions on Applied Superconductivity, vol. 34, 3, 1-9, 2024

✓ Rotating coil: optimized for small-bore multipole magnets (CERN-INFN design)


off the shelf components: PCB magnetometer (5 coils, 256 turns each); carbon fiber tube, 26 mm external diameter, 620 mm length; different configurations of PCB and shaft; commercial DC brush-less motor, high-resolution incremental encoder, slip-ring, data acquisition system, open-source software

MAIN FEATURES					
Main integrated gradient					
Absolute accuracy	50 ppm				
repeatability	10 ppm				
High order compensated harmonics					
Accuracy	100 ppm				
repeatability	10 ppm				

✓ Mole Hall probe: a travelling 3-axis probe sliding inside the magnet gap

compact 3-axis Hall probe, mounted on a thin mechanical support; Keysight digital multimeter; system similar to what already built for measuring SABINA's undulators

Lauria A. et al. "Rotating-Coil Measurement System for Small-Bore-Diameter Magnet Characterization", Sensors 2022, 22(21), 8359 CERN-INFN collaboration agreement KR4708/TE

Lucia Sabbatini, EuPRAXIA-PP Annual Meeting 2024

www.eupraxia-pp.org