EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

RF Components – WP9

Luigi Faillace, INFN-LNF EuPRAXIA_PP Annual Meeting 2024

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No. 101079773

- » High brightness 2-bunches electron beam at 500 MeV, at 100 Hz repetition rate to drive a PWFA, accelerating the witness up to 1 GeV
 - » The 1 GeV witness beam will be extracted and injected in undulator modules to produce FEL radiation in the VUV – X ray range
- » S-band (2.856 GHz) injector composed by a photocathode 1.6 cells SW RF Gun and 1x 3m TW S-band structure and 3x 2m TW Sband structures
- » X-band (11.994 GHz) booster composed by 16x TW, 0.9 m accelerating structures with a nominal gradient of 60MV/m

Courtesy of F. Cardelli

Injector Design - Layout

At the EuPRAXIA@SPARC_LAB facility, the main challenge for the RF photo-injector comes from the request of producing ultra-short (witness beam ~ 7 fs rms), high brightness electron beams

- 1.6 cell UCLA/BNL type SW RF gun, equipped with a copper photo cathode and an emittance compensation solenoid
- ~11 cm X-band linearizing cavity for jitter optimization in the two-bunch (*comb-like*) configuration
- four TW SLAC-type sections: 1x 3m and 3x 2m TW S-band structures
- two compensation solenoids surround the first two S-band cavities for the operation in the velocity bunching scheme (RF compression)

Courtesy of E. Chiadroni

- The choice of different length structures is based on the fact that the first S-band cavity is operated at 90 deg off crest for RF bunch over-compression; eventually the final driver and witness durations, and their temporal separation, are completed in the second S-band structure
 - A dedicated, optimized design of the RF structure is mandatory to take into account for the different filling times in the 3 m and 2 m long structures, in order to optimize the RF power distribution

Layout S band Structures (m)	WoP 1 (pC)	S1 accel grad (MV/m)	S2 accel grad (MV/m)	S3 accel grad (MV/m)	S4 accel grad (MV/m)	X band accel grad (MV/m)
3+2+2+2	30 – 200	21	21	30	35	
3+2+2+2	50 – 250	21	21	30	35	

Courtesy of

E. Chiadroni and

A. Giribono

X-band Linearizing Cavity

An intensive prototyping activity is ongoing exploiting the new vacuum furnace at LNF.

- > The full-scale mechanical prototype brazing test gives optimum results in term of straightness and vacuum
- > The 20 cells CI RF prototype has been realized
- \blacktriangleright Low power RF measurements showed that the cells are all the same but smaller by approx ±2 µm

PARAMETER	Value	
Frequency [GHz]	11.9942	
Average acc. gradient [MV/m]	74	
Peak input power [MW]	35	
Pulse length [ns]	100	
Repetition Rate [Hz]	50	
Breadown rate probability	1e-5	

> The 20 cell-structure was brazed and tested at high power:

> A full-scale 0.9m RF prototype is in production.

INFN-LNF: D. Alesini, S. Bini, B. Buonomo, S. Cantarella, F. Cardelli, R. Clementi, C. Di Giulio, E. Di Pasquale, G. Di Raddo, R. Di Raddo, L. Faillace, M. Ferrario, A. Gallo, A. Giribono, L. Giuliano, G. Latini, A. Liedl, V. Lollo, L. Piersanti, S. Pioli, R. Ricci, B. Serenellini, M. Zottola on behalf of the TEX and EuPRAXIA technical team, INFN-LNF Accelerator Division and Technical Division

CERN: W. Wuensh, N. Catalan-Lasheras, A. Grudiev, G. McMonagle on behalf of the CLIC and XBOX group

Thanks for your attention!