EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

High repetition rate plasma sources

Lucio Crincoli

INFN-LNF, Sapienza University of Rome On behalf of the EuPRAXIA@SPARC_LAB collaboration

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No. 101079773

• Plasma module limitations in high repetition rate operation

Ceramic Plasma Discharge Capillaries

- Design and experimental setup
- High repetition rate testing and characterization
- Heat transfer numerical analysis

Laser-induced plasma filaments

• Experimental setup and characterization

• Plasma module limitations in high repetition rate operation

Ceramic Plasma Discharge Capillaries

- Design and experimental setup
- High repetition rate testing and characterization
- Heat transfer numerical analysis

Laser-induced plasma filaments

• Experimental setup and characterization

Limitations in high repetition rate

Plasma module operation at high repetition rate 1. Heating of HV discharge system

- 2. Effort required from vacuum systems for gas injection in continuous flow

• Plasma module limitations in high repetition rate operation

Ceramic Plasma Discharge Capillaries

- Design and experimental setup
- High repetition rate testing and characterization
- Heat transfer numerical analysis

Laser-induced plasma filaments

• Experimental setup and characterization

Advanced Ceramic capillaries

High temperature resistant materials

- High thermal conductivity
- High max operating temperature
- Good machinability, cost-effectiveness and availability for large geometries

3 cm long, 2 mm diameter

Advanced Ceramic capillaries

Plasma density measurements

Experimental results

- Transverse density profile at the density peak
- ✓ No alteration in plasma density distribution

Laser spot imaging

Experimental results

- Laser spot size lineouts measured during the experimental campaign
- ✓ No alteration in laser spot size

Microscopic analysis

Optical Stereomicroscope -Euromex

Analytical estimate

Ohmic heating inside the plasma channel:

$$P(t) = R_p(t)I_p^2(t)$$

•
$$R_p(t) = \rho_{ei}(t) \frac{L}{S}$$

•
$$\rho_{ei}(t) = \frac{m_e}{n_e(t)e^2} v_{ei}$$

• $v_{ei} = \frac{4}{3} \sqrt{\frac{2\pi}{m_e}} \frac{e^4 n_e ln \lambda_{ei}}{(4\pi\varepsilon_0)^2 (k_B T)^{3/2}}$
• $ln \lambda_{ei} = ln \left[\frac{3}{2\sqrt{2\pi}} \frac{(4\pi\varepsilon_0)^{3/2} (k_B T)^{3/2}}{e^3 n_e^{1/2}} \right]$

Gonsalves, A. J. et al. J. Appl. Phys. 119, 033302, 10.1063/1.4940121 (2016).

$$T_e = 5.7 \left(\frac{I[kA]}{R_0[mm]}\right)^{2/5} eV$$

Analytical estimate

Ohmic heating inside the plasma channel:

$$P(t) = R_p(t)I_p^2(t)$$
$$Q_p = \int_0^\tau P(t) \approx 100 \, mJ$$

$$f = 10, 100, 1000 \, Hz$$

$$P_{avg} = 1, 10, 100 W$$

Heat transfer simulations

Fourier's Law:

$$\vec{q} = -k(T)\nabla T$$

 Heat transfer within the entire plasma source

10³

• Plasma module limitations in high repetition rate operation

Ceramic Plasma Discharge Capillaries

- Design and experimental setup
- High repetition rate testing and characterization
- Heat transfer numerical analysis

Laser-induced plasma filaments

• Experimental setup and characterization

Laser-induced plasma filaments

Experimental setup

- Ti:Sapphire laser system:
 - 10 mJ, 350 fs FWHM, 10 Hz
- 10 cm X 1 m gas cell
- 1 mbar N₂ 95% H₂ 5%

Experimental characterization

- Side imaging fluorescence technique
 - Filament size
- Spectral analysis
 - Plasma density and temperature distribution
- Photodiode
 - Decay time

Laser-induced plasma filaments

Plasma filament properties

- 4cm x 300 um
- $n_e = 10^{16} \text{ cm}^{-3}$
- T_e = 1.3 eV
- Decay time 8 ns

Advantages

- Low energy deposition
- Tunable dimensions and density
- No time-jitter
- Low gas injection

Conclusions

High repetition rate plasma sources

- Upgrade of the entire plasma module is required
- High temperature resistant ceramics are machinable, cost-effective and available for large geometries
- Preservation of plasma properties and source integrity is demonstrated at 150 Hz
- Laser-induced plasma filaments represent a promising alternative

Thanks to EuPRAXIA@SPARC_LAB team!

Thank you for the attention!