EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

High repetition rate C-band photoinjector

Gilles Jacopo Silvi* (Sapienza University of Rome & INFN-LNF) EuPRAXIA_PP Annual Meeting 2024 On behalf of the EuPRAXIA@SPARC_LAB collaboration *gillesjacopo.silvi@uniroma1.it

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No. 101079773

• EuPRAXIA@SPARC_LAB injector base-line

OUTI INF

- Motivation for the upgrade to a full C-band Injector
 - Preliminary layout and beam dynamics studies
 - C-band injector proposal for future upgrade
 - Improvement in beam dynamics
 - Conclusions and future prospectives

EuPRAXIA@SPARC_LAB base-line RF injector

Injector exit parameters	Witness	Driver
Spot Size	0.118 mm	0.127 mm
Bunch Length	5 µm	62 µm
Emittance	0.55 μm	1.5 µm
Energy	124 MeV	126 MeV
Energy spread	0.18 %	0.55 %
Bunch separation	0.5 ps	
Peak current	1.8 kA	

> 1,6 cells S-band RF Gun equipped with a solenoid

> 4 TW S-band accelerating structures, the first one 3 m long while the other 2 m

> 2 emittance compensation solenoids around the VB sections

> Overall length of \approx 13 m

[1] A. Giribono et al. EuPRAXIA@SPARC_LAB, The high brightness RF photo injector layout proposal, NIMA (2018)

Working point optimization

[2] Bacci A, Faillace L and Rossetti Conti M 2018 Extreme high brightness electron beam generation in a space charge regime.
[3] Alesini D et al., 2015 Study of a C-band harmonic RF system to optimize the RF bunch compression process of the SPARC beam 6th International Particle Accelerator Concerning 1940
[4] Emma P., 2001 X-Band RF harmonic compensation for linear bunch compression in the LCLS SLAC Nation Accelerator Laboratory Technical Note SLAC-TN-05-004, LCLS-14-01-1
[5] G.J Silvi et al., Optimizing beam dynamics in the EuPRAXIA@SPARC_LAB RF injector, SIF CONGRESS 2023, 10.1393/ncc/i2024-24323-5

www.eupraxia-pp.org

Stability studies

For a working point with the characteristics of the EuPRAXIA setup, the temporal jitter between the driver and witness beams of approximately $\delta t \approx \text{few fs}$ for an energy jitter of 0.1%.

Compression phase (deg) [13] A Mostacci et al. Proceedings of IPAC2011, San Sebastián, Spain

Charge	Spot Size	RF phases (S/X)	Acc field amplitude
2 %	1 %	0,02/0,08 deg	0.02% rms

Jitters	ϵ (mm-mrad)	Bunch separation(ps)	Bunch Length (ps)
phase X & gradients S&X, charge	0.6611 ± 0.0190	0.5467 ± 0.0018	$0.0136 \pm 9.65 imes 10^{-5}$
phase X & gradients S&X	0.6619 ± 0.0132	0.5462 ± 0.0022	$0.0136 \pm 1.12 \times 10^{-4}$
All (no time of arrival)	0.6683 ± 0.0222	0.5460 ± 0.0037	$0.0138 \pm 3.8 imes 10^{-4}$
phases & gradients S&X	0.6693 ± 0.0165	0.5448 ± 0.0030	$0.0137 \pm 1.42 \times 10^{-4}$
phase X, gradients S&X ,charge spot	0.6698 ± 0.022	0.5463 ± 0.0025	$0.0138 \pm 4.29 \times 10^{-4}$
All	0.6602 ± 0.0194	0.5469 ± 0.0039	$0.0136 \pm 3.5 \times 10^{-4}$
phase & gradient X	0.6576 ± 0.0042	0.5464 ± 0.0012	$0.0136 \pm 1.83 \times 10^{-5}$
phase & gradient S, spot, charge	0.6611 ± 0.0212	0.5458 ± 0.0029	$0.0136 \pm 3.5 \times 10^{-4}$

The C-band technology allows for:

- ✓ Higher efficiency suitable for applications requiring repetition rates in the 100 Hz ÷ 400 Hz range.
- ✓ Reduce injector footprint by maintaining high-quality high-brightness beams.
- ✓ Easier transition to the X-band booster.
- ✓ Peak field Higher than S-band.

Gun 160-180 MV/m

TW structures 60 MV/m (35 MV/m S-band) [6]

[6] W. Fang et al., "Design, fabrication and first beam tests of the c-band rf acceleration unit at sinap," Nuclear Instruments and Methods in Physics Research Section A: Acceler-ators, Spectrometers, Detectors and Associated Equipment,vol. 823, pp. 91–97, 2016, issn: 0168-9002. doi: https://doi.org/10.1016/j.nima.2016.03.101. https://www.sciencedirect.com/science/article/pii/S0168900216301474

[7] D.Alesini, A.Bacci, M.Bellaveglia., BeamenergyupgradeofthefrascatiFEL LINAC with a C-band RFsystem, in: Proceedings of the IPAC10, Kyoto, Japan, 2010, pp. 3682–3684.

EUPRAXIA Preliminary layout and beam dynamics studies

The beam dynamics has been studied to generate a single bunch with a variable length in the range $55-280 \mu m$ and different charges.

[8] Giribono et al. - Dynamics studies of high brightness electron beams in a normal conducting, high repetition rate C-band injector, PHYSICAL REVIEW ACCELERATORS AND BEAMS 26, 083402 (2023) [9] G. D'Auria et al, Compact-Light Design Study, doi:10.18429/JACoWIPAC2019-TUPRB032

Ę

The C-band Gun layout

The Gun peak field is set to 160 MV/m, the limitation over the higher peak field for the high rep rate operation has been overcome by elongating the gun up 2,6 [10] cells so the beam energy after the Gun is 5,7 MeV

Gilles Jacopo Silvi, EuPRAXIA_ PP Annual Meeting 22/09/2024

www.eupraxia-pp.org

Input port Mode IFAST launcher Beam axis Accelerating cells Pumping ports **Solenoid Field** Bz 0.2 0.3 0.1 0.2 0.4 z m

[10] M. Croia, D. Alesini, F. Cardelli, M. Diomede, M. Ferrario, A. Laboratori Nazionale di Fisica Nucleare Giribono, S. Romeo, C. Vaccarezza, and A. Vannozzi, High gradient ultra-high brightness C-band photoinjector optimization, J. Phys. Conf. 8 Ser. 1596, 012031 (2020)

C-band Gun specs

- » 2.6 cells Standing wave RF Gun
- » Coupling coefficient $\beta = 3$
 - » Short RF Pulses
 - » Reducing BDR, pulsed heating,
 - » Reducing power dissipation
- » Elliptical iris profile with large aperture
 - » Reduce surface peak field
 - » Increase frequency separation,
 - » Increase pumping efficiency
- » 4 port mode launcher on-axis coupling [*]
 - » Low pulsed heating
 - » compensation of the dipole and quadrupole field components

Ē

» Integrate 2 pumping units

Parameter	Unit	Value
Frequency	GHz	5.712
Number of cells		2.6
$E_{cath}/\sqrt{P_{diss}}$	MV/(m·MW ^{0.5})	51.4
Peak input power	MW	18
Cathode field	MV/m	160 (180)
Cathode type		OFHC copper
Rep. rate	Hz	100 (400)
Quality factor		11900
Filling time	ns	166
Coupling coefficient		3
RF pulse length	ns	300
Mode sep. π-π/2	MHz	47
E _{surf} /E _{cath}		0.96
Mod. Poy. Vect.	W/µm²	2.5
Pulsed heating	°C	<16
Av.diss. Power	W	250 (1000)

Courtesy of F. Cardelli

* [11] Design based on G Castorina et al 2018 J. Phys.: Conf. Ser. 1067 082025

[12] D. Alesini et al., Design, realization and high-power RF test of the new brazed free C band photo-gun, Proc. IPAC'24, 2024
[13] F. Cardelli et al., Design and realization of high-gradient C-band standing wave RF gun, SIF CONGRESS 2023, <u>10.1393/ncc/i2024-24272-y</u>

C-band TW structures, the INFN-LNF expertise

ELI-NP dumped cells for multi-bunch operation (100 Hz)

TABLE	I.	Main	parameters	of	the	ELI-NP	accelerating
structure	s.						

Parameter	Value
Working frequency $(f_{\rm rf})$	5.712 GHz
Cell phase advance	$2\pi/3$
Number of cells	102
Structure length	1.8 m
Iris aperture radius	6.8-5.78 mm
Repetition rate	100 Hz
Average quality factor	8850
Average accelerating field	33 MV/m
Shunt impedance	67–74 MΩ/m
Group velocity (v_a/c)	0.025-0.015
Filling time	313 ns
rf input power (P_{in})	40 MW
Output power (P_{out})	0.29P _{in}
Pulse duration for beam (τ_{beam})	<512 ns
Pulsed heating (input coupler)	<21 °C
Average wall-loss power	2.3 kW
Working temperature	30 °C

[14] D. Alesini et al,0.1103/PhysRevAccelBeams.23.042001

Comb working point

Comb beam dynamics results

Beam parameters @ cathode	Witness	Driver
Spot Size	0.175 mm	0.35 mm
Bunch Length	220 fs	220 fs
Charge	30 pC	200 pC
Bunch separation	6.3 ps	

C-band Injector exit parameters	Witness	Driver
Bunch Length	3.4 µm	100 µm
Emittance	$0.48\mu\mathrm{m}$	1.40 µm
Energy spread	0.2 %	1.1 %
Bunch separation	0.22 ps	
Peak current	1.9 kA	0.3 kA

Matching condition in plasma

C-band injector layout proposal

The C-band injector, scaled [15] from the S-band design, features an initial cavity length of 1.5 meters, with subsequent cavities measuring 1 meter each. The electric fields within the cavities are doubled compared to the S-band configuration. The first cavity operates with a peak electric field of 34 MV/m to support VB operations. Additionally, the magnetic field in the solenoid cavities is also doubled in accordance with the scaling laws.

Gilles Jacopo Silvi, EuPRAXIA_ PP Annual Meeting 22/09/2024

www.eupraxia-pp.org

Beam dynamics simulations

Injector exit parameters	Witness / Driver
Emittance (mm-mrad)	0,65 / <mark>2</mark>
Energy (MeV)	136 / <mark>138</mark>
Energy spread (KeV)	3,5 / <mark>5,8</mark>
Bunch separation (ps)	0,45
Bunch length (um)	3,2 / 70

Gilles Jacopo Silvi, EuPRAXIA_ PP Annual Meeting 22/09/2024

EUPRAXIA Phase space manipulation with a SW Ka-band cavity

Ē

[16] M. Behtouei et al. 'A SW Ka-Band linearizer structure with minimum surface electric field for the compact light XLS project, NIMA vol 894 (2020) https://doi.org/10.1016/j.nima.2 020.164653

Injector exit parameters	Witness / Driver
Emittance (mm-mrad)	0,45 / <mark>2,46</mark>
Energy (MeV)	136 / <mark>138</mark>
Energy spread (KeV)	4,6 / <mark>4,8</mark>
Bunch separation (ps)	0,5
Bunch length (um)	3,7 / <mark>56</mark>

[17] J. Scifo et al. 'BEAM DYNAMICS STUDIES IN A STANDING WAVE Ka-BAND LINEARIZERIPAC2021. Campinas, SP, Brazil, doi:10.18429/JACoW-IPAC2021-MOPAB270

[18] A. Castilla, R. Apsimon, G. Burt, X. Wu, A. Latina, X. Liu, I. Syratchev, W. Wuensch, B. Spataro, and A. W. Citation Sp

-0.5

-1

0

0.5

Z (μm)

1

0.3

0.2

1.1

0

1.12

0.1

z (mm)

×10⁻⁵

1.5

- This study demonstrates that operating a plasma stage with a complete Cband injector is feasible. This machine is expected to enhance the repetition rate and reduce the injector's footprint while maintaining highquality beams through a more compact system.
- Further optimizations of the new C-band injector are ongoing. Additional focus will be placed on beam dynamics simulations to address the time separation required for PWFA application.
 - Further investigation into the layout, including the Ka-band cavity, is needed to assess its impact on the bunch separation and stability.
 - technological feasibility must be demonstrated.
- Jitter studies must be performed to assess the working point stability.

EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

Thank you for your attention

Gilles Jacopo Silvi* (Sapienza University of Rome & INFN-LNF) EuPRAXIA_PP Annual Meeting 2024 On behalf of the EuPRAXIA@SPARC_LAB collaboration *gillesjacopo.silvi@uniroma1.it

Special acknowledgment to A. Giribono, E. Chiadroni, C. Vaccarezza, A. Mostacci, B Spataro F. Cardelli, and the EuPRAXIA@SPARC_LAB WP1 for materials and discussi

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No. 101079773

EuPRAXIA-PP Consortium I

EuPRAXIA-PP Consortium II

EuPRAXIA-PP Consortium III

EuPRAXIA-PP Consortium IV

Complemented by institutes in EuPRAXIA ESFRI consortium: additional 17 institutes from France, Germany, Poland, Sweden, United Kingdom, China, Japan, United States

EuPRAXIA-PP Structure

Acknowledgements

• EuPRAXIA Preparatory Phase

This project has received funding from the European Union's Horizon Europe research and innovation programme under Grant Agreement No. 101079773. It is supported by in-kind contributions by its partners and by additional funding from UK and Switzerland.

EuPRAXIA Doctoral Network

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement no. 101073480 and the UKRI guarantee funds.

This publication has been made with the co-funding of European Union Next Generation EU.