EuPRAXIA — Possible Contributions to the Linear Collider Development

Jens Osterhoff

September 27th, 2024 EuPRAXIA_PP Annual Meeting, Elba

Lawrence Berkeley National Laboratory

Work supported by the U.S. DOE, Office of Science, Office of High Energy Physics, under Contract No. DE-AC02-05CH11231 *Figure credit:* A. Formenti, R. Lehe (LBNL)

-
-
- (repurposing of ILC/CLIC/C3 infrastructure)

Plasma collider challenges

-
-

-
-

Page 4

Page 4

Positron acceleration

- No concept exists (yet) that fulfills needs critical - beam quality, efficiency, resilience

| **Jens Osterhoff** | EuPRAXIA_PP | September 24, 2024 **Page** Page 4

Page 4

+ critical - driver in-/out-coupling, geometric gradient

Positron acceleration

urgent need for positron test facility capabilities → new concepts under active R&D

-
-

Page 4

- *Staging:* requires detailed concepts, additional test facilities + critical - driver in-/out-coupling, geometric gradient

Positron acceleration

urgent need for positron test facility capabilities → new concepts under active R&D

-
-

Technology R&D and critical experimental facility needs

technically feasible near-term

existing systems

technically feasible near-term

systems

Novel laser technology needed to fulfill collider demands

in repetition rate (Hz $\rightarrow \sim 50$ kHz), efficiency (0.1% \rightarrow 10s %)

technically feasible near-term

systems

Novel laser technology needed to fulfill collider demands

in repetition rate (Hz $\rightarrow \sim 50$ kHz), efficiency (0.1% \rightarrow 10s %)

Promising emerging laser architectures

- Cryo-cooled **Yb:YAG** $(\lambda = 1 \mu m)$, R&D at CSU
- **Tm:YLF** ($\lambda = 1.9$ µm), R&D at LLNL
- **Coherent combination of fiber lasers** ($\lambda = 1$ µm), R&D at LBNL, Michigan, Jena, École Polytechnique
	- potential for highest efficiency
	- 1 µm to minimize # of accelerator stages
	- monolithic design for robustness, serviceability

technically feasible near-term

systems

Novel laser technology needed to fulfill collider demands

in repetition rate (Hz $\rightarrow \sim 50$ kHz), efficiency (0.1% \rightarrow 10s %)

Promising emerging laser architectures

- Cryo-cooled **Yb:YAG** $(\lambda = 1 \mu m)$, R&D at CSU
- **Tm:YLF** ($\lambda = 1.9$ µm), R&D at LLNL
- **Coherent combination of fiber lasers** ($\lambda = 1$ µm), R&D at LBNL, Michigan, Jena, École Polytechnique
	- potential for highest efficiency
	- 1 µm to minimize # of accelerator stages
	- monolithic design for robustness, serviceability

Development of a low average power demonstrator stage LPA stage parameters for 10 TeV case in flux, likely fall within reach of EuPRAXIA 2nd pillar

Laser: 6.5 J energy per pulse, $\lambda = 1.0$ µm, 130 fs pulse length, **47 kHz rep. rate, 50% wall-to-laser efficiency**

Plasma: $n_0 = 10^{17}$ cm⁻³, 1.7 m stage length, 5 GeV gain per stage

- Study and improve in relevant plasma cell
	- stability
	- longevity
	- jitter effects
- beam quality
- efficiency
- particle spin J. Vieira *et al.*, PRSTAB **14,** 071303 (2011)

Bunch: 200 pC, 8.5 µm length

rrrrrr|

Conceptual parameter set

C.B. Schroeder *et al.,* **JINST** 18 T06001 (2023)

→ Demonstrating stage parameters (low avg. power, varying εn)

Active correction systems for high repetition rate modules must be developed

EuPRAXIA in prime position to advance plasma stage, beam, and laser stabilization

95% of environmental vibration at up to kHz

- Can be corrected at up to Nyquist frequency of laser repetition rate
- Fast correction feedbacks and controls need to be developed
- EuPRAXIA is in a prime spot to make significant contributions toward collider stability needs (still to be carefully studied)

errere | ||

Predominant source of vibration in LPAs is correctable a frequencies at a few 100 Hz

Basic jitter considerations for plasma stages

- Wakefield amplitude [ILC: RF stability 0.3%]
	- Relatively insensitive to direct laser and plasma fluctuations: \sim 1/2

- *But:* phase stability critical, e.g. fraction of max. 0.3% of $\lambda_{\rm p}/2 \rightarrow$ max 1 fs at $n_{\rm e} = 10^{17}$ cm⁻³
- **Driver witness timing stability** [see amplitude stability]
	- Beam fluctuations go down with Sqrt(N), with N the # of RF-independent accelerator modules (w/o accounting for chromatic transport effects)
	- ILC: 0.85 GeV per RF unit; plasma LC: energy gain/module 10 GeV \rightarrow 3.4x higher req. vs ILC
	- Can be mitigated by Lindstrøm scheme
- **EXTERS 1 FRANSVERSE DRIVER witness positioning in wake**
	- Has to be a fraction of witness spot size \rightarrow emittance growth in matched wakefield
	- Matched beam size in 1 nm range for multi-TeV!
	- Mitigation: quasi-linear wakes/hollow channels?

$$
E_z \propto \frac{a_0^2 n_e^{1/2}}{(1 + a_0^2/2)^{1/2}}
$$

PWFA stages for colliders likely to escape EuPRAXIA parameter space

General beam-driven module R&D still of high interest for gaining credibility for complex applications

- ‣ Energy gain per stage / bunch charge outside of EuPRAXIA reach
- ‣ General advancements in beam-driven stage R&D important for field:
	- large energy gain / gradient + beam-quality preservation
		- + high driver-to-witness efficiency
		- + high stability / low jitter

 $\bigcap_{r\in r}\bigcap_{i\in r}$

Achromatic transport, nonlinear APLs for staging to be tested PWFA staging test facility urgently required — can EuPRAXIA take on that role?

Fresh

- > In- and out-coupling of drivers
- > Synchronization of drivers at fs-scale
- > Isochronicity (R56) cancellation/control (for correct beam loading)
- > Emittance preservation between stages:
	- Matching of beta function for all energies
	- Transverse alignment and stability
	- Dispersion cancellation
	- Coulomb scattering
- > Driver distribution scheme
- > CSR management
- > Compactness (for a TeV/km average accelerating gradient)
- > (Transverse) tolerances & jitter
- > Synchrotron rad. in NL APL \rightarrow energy spread increase

Challenges

PWFA staging concept for HALHF Concept for HALF

B-fields in nonlinear plasma lens. Credit: P. Drobniak

C.A.Lindstrøm,

erc

SPARTA ERC Project

ا.C.A
SPARTA EI

Finite plasma channels: Diederichs et al., PRAB 22, 081301 (2019) Diederichs et al., PRAB 23, 121301 (2020) Diederichs et al. PoP 29, 043101 (2022) Diederichs et al. PRAB 25, 091304 (2022)

BERKELEY LAB | Jens Osterhoff | EuPRAXIA_PP | September 24, 2024

New promising positron acceleration concepts are emerging New plasma-based schemes could provide pathway to high beam quality, stability, high efficiency ➞ **Need a test facility!**

Hollow core plasma channels: Zhou et al., PRL 127, 174801 (2021) Zhou et al., PRAB 25, 091303 (2022) Silva et al., PRL 127, 104801 (2021)

Page 11

More concepts: Lotov, PoP 14, 023101 (2007) Zhou et al. arXiv:2211.07962v1 (2022) Wang et al. arXiv. 2110.10290 (2021) Liu et al., PRAppl 19, 044048 (2023)

Physics verification and simulation code benchmarking

Emittance mixing of flat beams needs to be explored in experiment

| **Jens Osterhoff** | EuPRAXIA_PP | September 24, 2024 **Page** S. Diederichs *et al.*, arXiv:2403.05871, under review (2024)

-
-
-
- $\begin{picture}(22,10) \put(0,0){\vector(0,1){10}} \put(15,0){\vector(0,1){10}} \put(15,0){\vector(0$

Critical beam dynamics challenges for colliders have been overcome: mitigating hosing instability and beam scattering effects in simulations Experimental verification of simulations/physics required, can EuPRAXIA help?

- via BNS damping: requires large (~10%) chirp owing to strong beam loading – transport challenges
- **with head-to-tail density variation:** naturally created by ion motion

 $d\epsilon_i$ \overline{dz} **Normalized emittance growth [nm]** growth [nm] emittance Normalized

• Emittance growth (very) weakly dependent on plasma density (reduction in density \leftrightarrow increase length)

Hosing/BBU instability: **high efficiency and** *Hosing/BBU instability:* **high efficiency and stability in plasma facilitated by ion motion stability in plasma facilitated by ion motion**

Page 14

$$
\frac{n}{z} \simeq \frac{\gamma}{2k_{\beta}} \frac{d\langle \theta_x^2 \rangle}{dz} \Delta \epsilon_n = \frac{\sqrt{2}r_e Z}{(E_z/E_0)} \ln\left(\frac{r_{\text{max}}}{r_{\text{min}}}\right) \gamma_f^{1/2} \sim r_e \gamma_f^{1/2}
$$

Strong focusing suppresses emittance growth

Beam scattering in plasma negligible: **sub-nm normalized** *Beam scattering in plasma negligible:* **sub-nm normalized emittance growth for a TeV-scale collider emittance growth for a TeV-scale collider**

Verification of beam-beam IP codes

-
- Beam disruption: beams change shape as they collide
- Beamstrahlung: particles emit hard photons and lose energy
- Secondary e+/e- pair creation: can affect the beam evolution

- Coherent processes: particle creation in high field (e.g. Breit-Wheeler), under the local constant field approximation (LCFA)
- Incoherent processes: particle creation in collisions between individual particles (e.g. Bethe-Heitler)

Current simulation tools represent QED processes (photon & e+/e- pair creation) as combination of

Unclear whether these approximations/models are still valid for 10 TeV

 \rightarrow experimental nonlinear QED benchmarking needed

EuPRAXIA with its combination of

GeV electrons and high-intensity laser an interesting testbed!

 $\begin{picture}(22,10) \put(0,0){\vector(0,1){10}} \put(15,0){\vector(0,1){10}} \put(15,0){\vector(0$

Which field strength in beam frame compared to Schwinger can be reached?

Multiphoton Breit-Wheeler

 $v + n \omega \rightarrow e^{\alpha} e^{\gamma}$

 $\gamma \gamma \rightarrow e^- e^-$

Landau-Lifshitz

 $q_1 q_2 \rightarrow q_1 q_2 e^{\dagger} e^{\dagger}$

Bethe-Heitler

 $\gamma Z \rightarrow Z e^- e^+$

Myre

Page 15

Plasma accelerator technology is of high interest for the future of particle physics • Reduce the size of future colliders (reduced construction cost, environmental impact) • Potential for reduced operation cost (higher luminosity/power) • Upgrade path for Higgs-factory LCs (repurposing of ILC/CLIC/C³ infrastructure - LCVision)

-
-
-

Conclusion

EuPRAXIA, as a flagship facility and with its application focus, can lead the way toward more mature plasma accelerators \rightarrow credibility for complex applications

EuPRAXIA is well positioned to contribute to

- Technology R&D and provide critical experimental facilities
	- LPA demonstrator stages (at low average power, approaching collider emittances)
	- PWFA staging
	- Positron beam test capabilities
- Enable physics verification and simulation code benchmarking
	- Experimental flat beam tests
	- Experimental hosing mitigation tests
	- Experimental nonlinear QED tests

<u>rrrrrr⁷</u>