Dielectric wakefield acceleration: application to linear colliders

J. Rosenzweig UCLA Dept. of Physics and Astronomy EuPRAXIA-PP Meeting Elba - September 24, 2024

Wakefield accelerators are now key candidates for TeV colliders

- Beam (or laser) driven
 - Any slow wave medium supports wave, $v_{\phi} \sim c$
- Short wavelength goes hand in hand with high gradient
- Emerging technology need a "stepping stone" to future application

PWFA-based FEL as stepping stone

- EuPRAXIA plasma accelerator-based FEL, first dedicated facility
- Test bed for fundamental science challenges of PWFA in application

Good news for light sources. Is this enough for the HEP community?

Hybrid, asymmetric linear Higgs Factory (HALHF)

- Higgs factories are an urgent issue in HEP
- Avoids positron issue in PWFA via use of RF linac
- Asymmetric design minimizes footprint, adapts current detectors
 - 31 GeV e+ on 500 GeV e-
- Examine use of DWA on the e+ side (or both). Symmetric collider?

Dielectric wakefield acceleration: overview

"Traditional" DWA capillary tube is scaled THz linac

- Diverse, and more elaborate, structures possible
- Coherent Cerenkov emission into TW guide mode
- Agnostic to charge
- THz operation possible
 - Single bunch or resonant operation (sub-psec driver)
 - Unique THz source (reach nearly 1 Joule)
 - Over GV/m before breakdown (with caveats)

Dielectric loaded waveguide modes

- Accelerating modes TM_{0n} in hollow capillary within tube
- Simple application of dielectric and metal boundary conditions
- Dispersion relation in the two regions:

$$k_{\rho} \cong k_{z} \times \begin{cases} 0, \text{ in vacuum tube} \\ \sqrt{\varepsilon - 1}, \text{ in dielectric} \end{cases}$$

 $k_{z} \cong \omega / \zeta, \qquad \beta \rightarrow 1.$

• Frequencies are sol'ns of Wronskian transcendental equation:

$$J_1(k_{\rho,n}b)N_0(k_{\rho,n}a) - J_0(k_{\rho,n}a)N_1(k_{\rho,n}b) = 0$$

Note: $k_{zn} \sim k_{z1} \times 1,3,5...$

Quasi-optical model: λ

• Geometrically, the accelerating modes in

$$\lambda_n \approx \frac{4(b-a)}{n} \sqrt{\varepsilon-1}, \quad n=1,3,5...$$

Note, multi-mode wake follows $I(\zeta)$

Fundamental is determined by bounce of Cerenkov radiation twice between *b* and *a* Angle given by Cerenkov:

 $\tan \theta_c = \sqrt{\varepsilon - 1}, \ n = 1, 3, 5...$ $\tan \theta_c = k_\rho / k_z \text{ checks}$

Quasi-optical energy loss

Gauss' law in pill-box, plus Cerenkov condition, yields *decelerating* field coupling

See HW

$$eE_{z,dec} \approx \frac{-4N_br_em_ec^2}{8\pi} \sqrt{\frac{8\pi}{\varepsilon - 1}\varepsilon \sigma_z} + a$$

High quality beam needed, small σ_z and a (emittance)

• With $a \propto \lambda \propto \sigma_z$ we recover <u>Cerenkov scaling</u>

$$eE_{z,dec} \propto \frac{N_b}{\sigma_z^2}$$

Benchmark to simulation

- Excellent agreement with 2D PIC codes
- Quick estimates of operating conditions available

Axisymmetric DWA Mode profiles, full wave picture

• Transverse E_z variation ($k\rho \neq 0$) exists only in dielectric

- Panofsky-Wenzel adhered to; no net monopole focusing
- Dipole coupling to HEM mode strong. Other multipoles?

Multi-mode DWA gives "surprising" wake

- Single mode akin to linear PWFA E_z is convolution of I
- Longitudinal wake follows form of drive current in multi-mode
 - Exploit when we look at focusing/defocusing effects

DWA experiments: origin story

- Fundamental (GHz), harmonics observed with drive-scanning witness beam at Argonne (1988)
- Same facility as PWFA POP expt
- Less than 1 MeV/m gradient
- High charge; large a, $\sigma_z = 1$ cm

• Cerenkov scaling not exploited

SLAC FFTB gives ultra-high gradient opportunity

- Excellent beam for DWA: 3 nC, σ_z ~ 20 μm (65 fs), σ_x ~ 20 μm, U=28.5 GeV, a=50-100 μm, ε=3.8
- New frontier in DWA, to the breakdown frontier
 - Quasi-optical estimate of decelerating field $eE_{z,dec} \cong 7.9 \text{ GeV/m}$
 - Corresponds to (multi-mode) OOPIC simulations

$$eE_{z,dec} \cong 7.9 \text{ GeV/m}, \ eE_{z,acc} \cong 12 \text{ GeV/m}!$$

T-481 @ SLAC: exploring limits of dielectric breakdown in ps/THz regime

1st DWA with ultra-short, high Q beams

Leveraged off E167 PWFA at FFTB • Excellent beam 3 nC, $\sigma_7 \ge 20 \mu m$, 28.5 GeV

Goal: THz breakdown studies

- Al-clad fused SiO₂ fibers
 - ID 100/200 μm, OD 325 μm, *L*=1 cm
- Avalanche (MPI) v. tunneling ionization

Prediction of E_z =12 GV/m *much higher than optical-IR limit* (DLA)

"Octopus" chamber DWA holders, CCR collecting horn and transport, optical inspection

Breakdown in optical-to-mid-IR

Large distortion of electronic states pre-breakdown

- Tunneling and multiphoton ionization present
- Controlled by Keldysh parameter (unified theory of MPI/tunneling)

$$\gamma = \frac{\omega}{e} \left[\frac{mcn\varepsilon_0 E_g}{I} \right]^{1/2}$$

Optical-IR ionization dominated by MPI γ ~3

Mid-IR laser results emphasize MPI elimination when $hv << E_{gap}$

- 5 um (60 THz) light, 5 ps FWHM illumination
- Relevant to DWA (long pulse)

Si threshold: 400 MV/m! Sapphire: 2 GV/m

High ratio of bandgap to photon energy promising

Material	Germanium	Silicon	Sapphire
Band Gap (eV)	0.67	1.1	8.7(e)/8.8(o)/9.9 direct
Peak Fluence [J/cm ²]	0.44 ± 0.04	0.58 ± 0.04	14.0 ± 0.6
Damage Threshold [J/cm ²]	0.22	0.29	7.0

T481 Methods and Results

Fiber viewed end on with a microscope. Unpolished at left and polished at right.

CAD rendering of the capillary tube mounting

- Multiple tube assemblies
- Scanning of bunch lengths for wake amplitude variation
- Vaporization of Al cladding... dielectric cladding needed
- Observed breakdown threshold (field from simulations)
- Correlations to post-mortem inspection
- *5.5 GV/m deceleration field (sim.)*13.8 GV/m surface field!

M. Thompson, et al., PRL 100, 214801 (2008)

Coherent Cerenkov Radiation (CCR)

- For direct mode/field measurement - on to CCR
- FFTB closed 2006, FACET appears 2010
- Use UCLA Neptune for CCR
- Chicane-compress to 200 μ m, 0.3 nC beam focused with PMQs: $\sigma_r \sim 100 \mu$ m (*a*=250 μ m)
- Single-mode operation
 - Two tubes, different *b*, THz frequencies

A. Cook, et al., Phys. Rev. Lett. 103, 095003 (2009)

Physics of narrow band CCR production

- CCR train created at v_{ϕ} ~c
- CCR propagates at v_{g} ~c
- Length of pulse in DWA $L_{DWA} = L(1 - \beta_g)$
- Taking into account time to empty DWA, CCR wave train has length

$$L_{CCR} = L \frac{\left(1 - \beta_g\right)}{\beta_g}$$

• Very narrow BW for apps!

$$BW = \frac{\beta_g}{1 - \beta_g} \left(\frac{L}{\lambda}\right)$$

Narrow band, low-loss THz produced

Impedance matching reduces strong reflection

- Optimized launcher employed
- BW measurement limited
- Negligible damping observed
 - Valid at ~MV/m fields
 - Revisit at GV/m...
- 10 uJ collected (~50% transport efficiency)

Pushing the frontier in DWA gradients: E201 at SLAC FACET

- Recover FFTB capabilities
- 3 nC, ~30x30 um beams
- <u>15 cm long structures</u>
- >2 GeV/m deceleration
 - 2.8 GV/m peak wake
- 0.9 J deposited in CCR

Energy changed by over 300 MeV in 15 cm

SiO₂ 300 µm ID, 400 µm OD tubes

Acceleration with "witness" beam

- Shared charge between drive (1.6 nC) and witness (0.9 nC)
- 10 cm stuctures
- Lower gradients (640 MV/m)
- Loaded gradient 320 MV/m
- Efficiency of energy transfer to witness measured at 76%!
 - Consistent with gradient measurement

$$\eta = 1 - \frac{\textit{\textit{U}}_{\textit{EM,Load}}}{\textit{\textit{U}}_{\textit{EM,wave}}} \propto 1 - \frac{\textit{E}_{\textit{Load}}^2}{\textit{E}_{\textit{wave}}^2} = 0.75$$

Theoretical prediction for wakefields

See B.O'Shea, et al.

Discovery of high-field damping

• CCR measurements at FACET show anomaly at >1 GV/m

Physical mechanism: high-field induced conductivity

- Systematic study yields onset of high field effects above 800 MV/m acceleration gradient
 - Ponderomotive energy at THz $\sim E^2 \lambda^2$ above keV,
 - impact ionization efficients
- Higher band-gap material offers improvement, ...

Temporal analysis of THz autocorrelation

- With appropriate knowledge of spectrum from autocorrelation, one can retrieve phase
- Robust Kramers-Kronig algorithm uses minimal phase assumption

$$\psi(\omega) = -\frac{2\omega}{\pi} P \int_0^\infty dx \ \frac{\ln[\rho(x)/\rho(\omega)]}{x^2 - \omega^2}$$

• Measured CTR and start-to-end simulated signal compared in bunch compression expt.

Coherent THz-based wakefield map

- TM₀₁(400GHz), and TM₀₂ (1.2 THz) visible
- 1 cm structure should produce THz pulse >2 cm
- Strong damping seen directly in time domain

Key diagnostic for DWA in use

Lowering E-field inside of dielectric

- Dielectric boundary parallel to z produces worst case, tangential *E* is continuous maximized
- Shield with modulated boundary, support mode with *normal* entry of field lines. Diminish *E* by ε^{-1}

Note not only modulation, but photonic confinement, Cartesian symmetry...

Cartesian symmetry in DWA• Slab symmetry lowers longitudinal, wakes $E_{z,n} = E_{0,n} e^{-[x^2/w_{x,n}^2(\zeta)] - ik[x^2/R_n(\zeta)]} exp[ik_n\zeta + \psi_n(z)]$ • Slab symmetry mitigates transverse wakes

$$F_{x,n} \equiv q W_{x,n} = q(E_{x,n} - B_{y,n})$$

= $iE_0 \frac{2x}{k_n w_{x,n}^2(\zeta)} e^{-x^2/2\sigma_x^2} \exp[ik_n \zeta + \psi(z)],$

$$\sim \sigma_{ t x}^{-2}$$

Faster than E_z

Permits *higher Q flat* beam acceleration
Higher power at shorter λ

Wakefields in slab structures: results

- 1st observation of *slab-symmetric* dielectric structure wakes @ATF
 - *Key* for DLAs and DWAs: mitigates wakes, space-charge, beam loading

200

Novel modes; Longitudinal Section Mode (unconfined in x)

Diminished transverse kick with flat beams in slab structures

- Narrow gap (250 um) slab structure used at FACET
- Beam tuned to have high aspect ratio
- Structure displaced in x (gap dim.) and spectrum, wake-field kick observed

B. O'Shea, et al, Phys. Rev. Lett. **124**, 104801 (2020)

Suppresion of dipole kick for wide beam

Bragg slab wakefield experiment demonstrates confinement w/o metal

Simple 2D photonic structure (1st of its kind) with 3D effects observed Quartz (also matching layer) + ZTA (<loss)

G. Andonian, et. al *Phys. Rev. Lett.* 113, 26480 (2014)

3D Photonic DWA Structure: Woodpile

- Similar construction with the Bragg. Uses 3D photonic lattice, termed "woodpile"
- THz wakefield experiment carried out at BNL-ATF
 - 125 micron OD rod structure

Rich Fourier spectrum of modes

P.D. Hoang, et al. Phys. Rev. Lett. 120, 164801 (2018)

Slab structures support new modes

- Predictions of Baturin, et al., allow new modes to be easily identified
 - Dipole, quadrupole, *skew* quadrupole
 - Panofsky-Wenzel states that transverse wakes grow in t
 - Strong focusing instabilities induced in wide dimension

• Unified, simple model of multipoles (for pencil beam)

S. S. Baturin, G. Andonian, and J. B. Rosenzweig Phys. Rev. Accel. Beams 21, 121302 (2018)

Skew wakefields observed at AWA

- Flat beams with tilts in slab structures
- New reconstruction of *transverse* wakes from images

W. Lynn, et al., Phys. Rev. Lett. 132, 165001 (2024)

Vice to a virtue: alternating symmetry slab DWA

• Use pencil beam to excite strong time-dependent, alternating gradient focusing fields

Alternating symmetry slab DWA

Final transverse spatial distribution (simple slab)

Quadrupole instability grows head to tail

Final transverse spatial distribution propagation in alternating slabs

Second order stability in simulation

Current experimental testing at AWA

• New results now under analysis - a preliminary peek

What to do with this? Fix BBU

• Provide time dependent second order focusing - stability

C. Li, et al., PRSTAB 17, 091302 (2014)

- Obtain a *new path* to BNS damping
 - Overcome ~300 MeV/m limit identified a decade ago
 - Must have a defined origin in both dimensions (elliptical)
- For flexibility one may consider two-beam noncollinear
 - Stabilize both drive and witness systemsPhys. Rev. ST

What about *positron* wakes?

- Moderately high field tests at FACET (500 MV/m accel)
 - Field emission into gap from positron space charge?
- Probe with difference in CCR signal between e+ and e-

• No dependence on species

N. Majernik, et al., Phys. Rev. Research 4, 023065 (2022)

Discussion and outlook

- Dielectric wakefield acceleration provides at path to near 1 GeV/m acceleration for electrons and positrons
- Much is known of the various structures, physical effects and experimental methods
- For a near-term Higgs factory, one may address the problem of positron stability
- New insight into focusing and BBU control
- Wide parameter space for collider design
- There is much to do EuPRAXIA may play a role
 - Infrastructure for DWA directly overlaps with PWFA>