wee. Recotl dominated e-photon beam collisions — a way towards
novel radiation sources, advanced secondary beams and new
phenomena in astrophysics

255.5 keV photons can stop ANY relativistic electron
0.5mpc2 photons can stop ANY relativistic m, particle

Luca Serafini, Vittoria Petrillo and Sanae Samsam
INFN-Milano and Universita degli Studi di Milano

* Deep Recoil Inverse Compton Scattering revisited, how to stop
(MeV’s, GeV’s, TeV’s ...) electrons in a single-collision event:
a portal towards quantum gravity?

 From Thomson back-scattering to Full Inverse Compton
Scattering (FICS, total transfer of energy/momentum from
an electron to a photon)

EupraXia Meeting — La Biodola (Elba) — Sept. 2024
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(quantum nature of light essential: Inverse Compton Scattering,
Deep Recoill ICS for e* or 17, 1~ secondary beam generation,

Relativistic Rayleigh Scattering) Gamma Factory @ LHC
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Commissioning the STAR Inverse Thomson Scattering X-ray source:
progress report

Marcel Ruijter!, Adolfo Esposito?, Alberto Bacci', Luigi Faillace?®, Alessandro Gallo?, Alessandro Vannozzi®, Andrea Ghigo?, Angelo Stella?,
Dario Giannotti', Alesini David?, Ezio Puppin?, Fabio Cardelli?, Francesco Prelz', Gaetano Catuscelli?, Gianluca Luminati?, Giorgio Scarselletta?,
Illya Drebot!, Luca Piersanti?, Luca Serafini’, Luigi Pellegrino?, Marcello Rossetti Conti', Marco Bellaveglia®, Sanae Samsam', Sandro Vescovi?,
Simone Bini%, Simone Tocci?, Vittoria Petrillo*

' INFN - Sezione di Milano| Italy

Ab stract 2 INFN - Laboratori Nazionale di Frascati, Italy
strac B O
Politecnico di Milano, Italy
: e e : Semaag'd
The Southern European Thomson back-scattering source for Applied Research (STAR) is a Universita degh Studi di Milano, Italy
high energy photon facility located on the campus of the University of Calabria (UniCal). The Istituto Nazionale di Fisica Nucleare

facility was designed for its first phase to operate with an electron and photon energy up to
85MeV and 140keV respectively. For the second phase of the project the energy of the H N h E L
electrons, and thereby the photons, would be increased up to 150MeV and 300keV e ¥

respectively. The Italian Institute for Nuclear Physics (INFN) was awarded the project for Upgl dde to lg net gy mne
installing, testing and commissioning the energy upgrade of the electron beamline. Here we
will outline the progress made regarding the RF system and the Control System Software
(CSS5). The former consists out of two C-band linacs connected to their individual RF power

Upgrade to High Energy line ( HE-line ) consist out of:

stations for which the site acceptence test has recently been performed. For the latter the > Installation of soilenoid (8 cm) in front of S-band cavity for emittance control
network of the STAR site has been extended to allow the EPICS based CSS to be further > Installation of two C-band RF cavities incl. powerstations, for higher beam energy
developed, including top level GUIs and IT security infrastructure. > Cooling system upgrade

» Electric system upgrade, incl. backup power, power supplies and cabeling
» IT infrastructure & control system software
STAR Facility

Generating high energy radiation for
» Biological & Medical Imaging

» Cultural Heritage P
» Composite Materials )‘PGP/
» Metallurgy (Hydrogen embrittlement) — &, /'

» Mineralogy c

Electrons (CPA) Laser
> Emittance 1 [mm mrad] nergy :> 0.5 [Joule]
» Charge : 100 =500 [pC] Wavelength - 1030 [nm]
» Bunch length : <0.7 [ mm | » Bandwidth o1 [nm]
» Energy spread : 0.1 %, 0.05%
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All radiation originated by a Lorentz Boost associated to relativistic emitting
particles (electrons, heavy ions) is intrinsically poli-chromatic because of vy
correlation (energy boost of scattered photons depends on scattering angle,
at 6=1/y photon energy is 50% of max photon energy at 6 =0 ) of single
electron spectrum (on top of inhomogeneous effects)

E, = ymc?
, _ 4‘]/2Eph
E, ! P71 + X + y292
. ERF
- 2 0, o WEn _ 2B
E'e ~~a  mc? mc?

True for all kinds of Undulatory and Collisional radiation (bremsstrahlung,
wiggler/betatron, synchrotron, RRS, ICS), while resonant or amplified
radiation (undulators, FELSs), that are diffraction limited thanks to their beam
quality, are not (or only partially) affected
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WP 140 MeV
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Radiation is emitted into a narrow cone
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INFN All spontaneous undulatory X/y Radiation Sources
wmecsariss (o) MeV, GeV'...) are affected by the angular correlation

Spontaneous undulatory radiation (synchrotron, wiggler,
betatron, channeling, bremsstrahlung) Rotating Anoce Tube
— 292
' Ex = f(y=9°)

| ION BUBBLE

LASER DRIVE

BETATRON RADIATION

electron
¢slow)

Intensity

ELECTRON SHEATH

electron
( velodivishc)

ELECTRON BEAM

courtesy B. Paroli, M. Potenza ™
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Optics Communications
Volume 50, Issue 6, 15 July 1984, Pages 373-378

| ‘m Collective instabilities and high-gain regime
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A simple yet fundamental question:
“Why do | need 150 Mega-electronVolt electrons to
generate 350 kilo-electronVolt photons™” 7?7
(STAR biased...)

(not to mention a storage ring based light source where
a GeV electron beam radiates tens keV photons)

How to transfer maximum energy
from an electron to a photon...

EupraXia Meeting — La Biodola (Elba) — Sept. 2024



INFN Bremsstrahlung 1s clearly not an option:
TR a)  total electron energy loss not actually achievable

b) brilliance of bremsstrahlung sources 1s orders of magnitude smaller

][I‘ ' I ' ] ' ] ' I N 1 ol I " ] ! E
Electron beam energy |

Bremsstrahlung flux (arb. uint)

0 10 20 30 | 131]
Photon Energ}r {Me

100% e energy loss
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beginning of the story — the photon, quantum of energy

THE

1y o1 Nl B

A QUANTUM THEORY OF THE SCATTERING OF X-RAYS
BY LIGHT ELEMENTS

By Artaur H. Comupron

ABSTRACT
The change in wave-length due to scattering.—Imagine, as in Fig. 14, .ays by light elements.
santum is scattered it

t+irular alacrtran Thic

X = /\ = XC (e 159)

.
A N
Incident quantum, /\/\/\/V\J>@@¥_..(—2C‘/,jw_> £y
momentum = hvy/c \
~> —
W ¢

Fig. 1 A : Fig. 1 B ph

that an X-ray quantum of frequency », is scattered by an electron of
mass #. The momentum of the incident ray will be kvo/c, where ¢ is

E
ph
1+—3 (1 + cosV)

angular correlation!
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stitto Nazonale i Fisica uclare General Compt()n Scattering geOmetry
between an incident electron £, and a photon £,
at a collision angle o, photon £ ’.ph scattering angle 0
and electron £, scattering angle 0,

E, = ymc?

a) Y = 1 Direct C omp ton e f f ecCt Energy/momentum transferred from photon to e-
b ) ) 4 >»> 1 Inverse C omp ton Energy/momentum transferred from e- to photon



INEN'  We are not considering in this study non-linear
effects due to photon (laser) pulse intensity

. — q c A
a = L./Li /3] , ,
pe s no collective multi-photon effects
I e [i] ; by b
= 0.85A[um] |/ 22 only single electron-photon interaction

a la Klein-Nishina, linear OED
Ao, circular = #\/ ﬁ % V Ipeak ( Q )

toag ~~ 0.1
A Blaser = 0.1m.c2
RR

. —

107 Courtesy Marcel Ruijter
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Linear Thomson
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Politecnico di Milano — Theory of Relativity Course, Prof. E. Puppin, May 21st 2024
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First physicists forced to think at Inverse Compton Scattering,
1.e. a mechanism by which electrons loose energy in favor to photons,
(opposite than direct Compton effect) were...

The developers of the Nuclear Bomb!
and, soon later,
first observers of cosmic rays in the upper atmosphere,
trying to figure out why there are many protons and very few electrons

EupraXia Meeting — La Biodola (Elba) — Sept. 2024
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First consideration and study of Inverse Compton Scattering....

During the development of the nuclear bomb!
The Manhattan Project __

Will the back-scattered photons,

by hot electrons of the plasma
created in the initial stage of the Manhattan

nuclear bomb explosion, release PrOjECt
energy from the fire-ball decreasing aStI"OphySiCS

its temperature???

Michael Wiescher and Karlheinz Langanke

After World War |1, scientists applied the knowledge and
experience they gained from nuclear weapons to nuclear
astrophysics.

ELI-NP — Magurele (Bucharest) - July 9th, 2024
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\ 'I) Check for updates

https://doi.org/10.1063/pt.jksg.hage

MANHATTAN PROJECT ASTROPHYSICS

anignition could not be deemed impossible. The Trinity test
place in July 1945, and the atomic bombs were droppe
shima and Nagasaki shortly thereafter. Despite t
mendous damage, they did not set the atmogg#ere on fire.

Theory mitigates fear

The year after the test, Teller, his graduate student Emil
Konopinski, and local technician Cloyd Marvin Jr wrote a clas-
sified Los Alamos National Laboratory report in which they
summarized theoretical considerations on the possible ignition
of the atmosphere by an atomic explosion.! The paper, declas-
sified in 1979, argues that propagation of nuclear burning in
the atmosphere is possible only if the energy gained from nu-
clear reactions is greater than the energy loss through the emit-
ted gamma and beta radiation.

Physics Today 7T (3), 34—41 (2024);

Konopinski, Teller, and Marvin considered the fusion of two
N nuclei as the most important energy—producing reaction,
because N is the dominant component in Earth’s atmosphere.

On the other hand, when compared to the stable oxygen-16
isotope, "N nuclei can easily be broken up. Therefore, the fu-
sion of two “N atoms should lead mainly to a rearrangement
of the nucleons by the nuclear force and produce a light frag-
ment and a heavy fragment. Energetically, the most favorable
result would be their breakup into alpha particles and a mag-
nesium-24 nucleus.

Up to 17.7 MeV of kinetic energy from the reaction can be

After World War Il, scientists applied the knowledge and experience they gained from nuclear
weapons to nuclear astrophysics.

Michael Wiescher; Karlheinz Langanke

of initiating nuclear fusion
of the whole atmosphere!!!

FIGURE 2. J. ROBERT OPPENHEIMER in typical postures—at the
blackboard and with a cigarette. His goal as scientific director of
the Manhattan Project was to develop a nuclear device that
exploded from the fission of uranium-235 and plutonium-239.
(Illustration by David McMacken.)

The electron gas cools by inelastic scattering and by emitting
bremsstrahlung in the form of a continuous x-ray spectrum.
Because the atmosphere is transparent to that radiation, it loses
energy. Konopinski, Teller, and Marvin found that the rate of
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gen content. Of even more concern were the
tests of 20-megaton thermonuclear weapons
(so-called hydrogen bombs), and scientists even
considered the possibility of the fusion of *O
atoms in ocean water.? Their explosions would
increase the sudden energy release by up to
three orders of magnitude. The uncertainties in
the initial crude energy release and cooling cal-
culations required experimental verification.

Experiment confirms theory
To experimentally clarify the troubling situation,
a dedicated accelerator was built at Oak Ridge
National Laboratory in the early 1950s, which
made it possible to measure fusion cross sections
for “N + ¥N, %0 + %0, and other reactions of
medium-heavy nuclei.? Alexander Zucker, one of
the young scientists who was to measure the ef-
fective cross sections and who would later be
director of Oak Ridge, noted that for security
reasons he and other experimentalists were not
S © :data.
agaton

fire-ball becomes transparent ",

ecame

to photons, that can take energy ;.=

‘mains

off the fire-ball, limiting the =

emon-
maller

maximum temperature ed by

atmo-
‘a few

down to a “safe” level i

s—are
well below the Coulomb barrier, and the likeli-
hood of fusion is low.

The Oak Ridge fusion tests were not con-
fined to nitrogen and oxygen nuclei; they also
included tests on light isotopes such as deute-
rium and tritium and were meant to inform
Teller’s plans and ideas for developing the
“Super,” his label for a thermonuclear weapon
based on fusion. The idea for the fusion bomb
based on the fusion of deuterium and tritium
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FIGURE 3. A CRITICAL PLOT of the rate of energy production as a function of
temperature (in megaelectron volts), from the originally classified 1946 Los Alamos
report Ignition of the Atmosphere with Nuclear Bombs. Three curves characterize the
energy-transport conditions for different temperatures in the nuclear fireball. The
(dE/dt). curve shows the reaction rate for the fusion of two nitrogen-14 nuclei when
a constant cross section is assumed. The (dF/dt); curve shows the "N + N fusion
reaction rate when the cross section is assumed to rapidly decrease at low energies,
as predicted by George Gamow. And the (dE/dt), curve shows the radiative energy
loss through x-ray emission, as predicted by Arthur Compton. (From ref. 1.)

0L:00:4L %202 Wy 62
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C Gen. Leslie Groves asking Robert Oppenheimer about chances of

atmosphere 1gnition - “Robert, don't blow-up the world ”
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@ J Follin 1947 - Inverse Compton Scattering
first published (non classified) study on ICS™

Thesis by

James Wightman Follin, Jr,

Second motivation to study ICS in the late ‘40s was understanding why
electrons are alglost missing in cosmic rays bombarding the upper atmosphere

In Partial Fulfilment of the Requirements for the

Degree of Doctor of Philosophy

Both directions (nuclear bomb and astrophysics) were looking for
a mechanism capable to transfer maximum energy from the electrons to the photons

California Institute of Technology
Pasadena, California

1947

* but unknown and not credited in the whole literature on ICS
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Publication referenced by everybody in ICS community
as the first published paper on ICS

PHYSICAL REVIEW

VOLUME 73,

NUMBER 5§ MARCH 1, 1948

Interaction of Cosmic-Ray Primaries with Sunlight and Starlight*

E. FEENBERG AND H. PRIMAKOFF
Washington University, St. Louis, Missouri

(Received November 20, 1947)

This paper discusses collision processes between cosmic-
ray primaries (protons and electrons) and the thermal
photons of sunlight and starlight. In particular, electron-
positron pair production and Compton scattering in inter-
planetary, intragalactic, and intergalactic space are treated
in detail. It is found that the number of collisions between
primary particles and thermal photons in single traversals

energetic scattered photons. The same statement holds for
the primary protons even on an intergalactic scale. On
the other hand, energetic primary electrons may experience
a sufficient number of Compton collisions in intergalactic
space (travel time of the order 2X10° years) to eliminate
them effectively from the cosmic radiation reaching the
neighborhood of the earth.

er-

ind

* The research described in this paper was supported in
part by contract N60RI-117, U.S. Navy Department.

! T. H. Johnson, Rev. Mod. Phys. 11, 208 (1939);
M. Schein, W. P. Jesse, and E. O. Wollan, Phys. Rev. 59, ™

615 (1941); 59, 930 (1941).

on

2 Collisions between high energy photons, considered as .
cosmic-ray primaries, and thermal photons, with resultant ‘i
electron-positron pair creation have been considered by

45, 134 (A) (1934). Extensive calculations similar to the
present have been carried out by J. W. Follin, Bull. Am.
Phys. Soc.July 11, 1947, Abstract DS5. Through the
courtesy of Dr. J. R. Oppenheimer, we have seen a manu-
script copy of Dr. Follin’s paper.




INEN First idea by Milburn: use electron accelerators to perform
snaksiaies | [nyeyrse Compton Scattering in the laboratory vs. the cosmos

PHYSICAL REVIEW
LETTERS

VoLume 10

1 FEBRUARY 1963

NUMBER 3

ELECTRON SCATTERING BY AN INTENSE POLARIZED PHOTON FIELD*

Richard H. Milburn
Department of Physics, Tufts University, Medford, Massachusetts
(Received 26 December 1962)

Compton scattering by starlight quanta has been
postulated by Feenberg and Primakoff to be a
mechanism for the energy degradation of high-
energy electrons in interstellar space.! We shall
discuss here the possibility of observing this
phenomenon directly in the laboratory by scatter-
ing a multi-GeV electron beam against the intense
flux of visible photons produced by a typical laser.
It will be shown that using existing laser systems
and electron accelerators, one may expect to ob-
tain of the order of several thousand collimated
high-energy scattered photons during each ac-
celerator pulse, and that these quanta retain to
a high degree the polarization of the original beam
of optical photons.

The kinematic formulas for Compton scattering
on moving electrons are given by Feenberg and
Primakoff.? We shall consider the special case
of an extreme-relativistic electron of energy E
=ymc?, y=1/(1-p%¥2>1, incident head-on upon
a beam of photons of energy k; =(1-3) eV propa-
gating in the opposite direction. An observer
moving with the incident electron will see a pho-
ton of energy k,=2yk;. In Table I are listed for
various laboratory electron energies, E, the

narvraonandine valnac ~AF b tnhailntad in +Aannaa

The approximation fails only near x =1, for which
kr=k; is required. However, for large y =E /mc?
the bulk of the scattered photons is folded back
and emerges in the laboratory in the direction

of motion of the incident electron, making angles
with that direction given by 6 =2tan(36) =(1/y)
Xcot(z6,). Thus for 1-GeV electrons, all pho-
tons having 23°<6,<180° will end up within 0.0025
radian of the electron direction. We shall confine
our discussion to these high-energy quanta. The

Table I. Energy, A, polarization, and cross section
for highest energy photons produced by ruby-laser pho-
tons scattered on electrons of energy E. The quantity
0y, is the cross section for higher half of 2¢ spectrum.

E (®r)max Tz
(GeV) A (MeV) Prax (mb)
1.02 0.014 28 1.00 320
2.92 0.040 216 1.00 310
4.16 0.057 426 0.99 300
4.60 0.063 515 0.99 290
5.11 0.070 628 0.99 290
5.48 0.075 715 0.99 290
5.84 0.080 806 0.99 280
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Good recap of the whole ICS history

PHYSICAL REVIEW ACCELERATORS AND BEAMS 27, 080701 (2024)

From Compton scattering of photons on targets to inverse Compton
scattering of electron and photon beams

Luca Serafini® and Vittoria Petrillo

INEN Sez. Milano and Universita® degli Studi di Milano, Dipartimento di Fisica,
Via Celoria 16, 20133 Milano, Italy

® (Received 2 May 2024; accepted 1 August 2024; published 28 August 2024)

We revisit the kinematics of Compton scattering (electron-photon interactions producing electrons and
photons in the exit channel) covering the full range of energy/momenta distribution between the two
colliding particles, with a dedicated view to statistical properties of secondary beams that are generated in
beam-beam collisions. Starting from the Thomson inverse scattering, where electrons do not recoil and
photons are backscattered to higher energies by a Lorentz boost effect (factor 4y?), we analyze three
transition points, separating four regions. These are in sequence, given by increasing the electron recoil
(numbers are for transition points and letters for regions): (a) Thomson backscattering, (1) equal sharing of
total energy in the exit channel between electron and photon, (b) deep recoil regime where the bandwidth/
energy spread of the two interacting beams are exchanged in the exit channel, (2) electron is stopped, i.e.,
taken down at rest in the laboratory system by colliding with an incident photon of mc?/2 energy,
(c) electron backscattering region, where incident electron is backscattered by the incident photon, and
(3) symmetric scattering, when the incident particles carry equal and opposite momenta, so that in the exit
channel they are backscattered with same energy/momenta, and (d) Compton scattering [dla Arthur
Compton, see A. J. Compton, A quantum theory of the scattering of X-rays by light elements, Phys. Rev.
21, 83 (1923)], where photons carry an energy much larger than the colliding electron energy. For each
region and/or transition point, we discuss the potential effects of interest in diverse areas, like generating
monochromatic gamma-ray beams in deep recoil regions with spectral purification, or possible
mechanisms of generation and propagation of very high energy photons in the cosmological domain.

DOL: 10.1103/PhysRevAccelBeams.27.080701

EupraXia Meeting — La Biodola (Elba) — Sept. 2024



I N F N PHYSICAL REVIEW ACCELERATORS AND BEAMS 19, 020702 (2016)

Istituto Nazionale di Fisica Nucleare Narrow-band GeV photons generated from an x-ray
free-electron laser oscillator

Ryoichi Hajima"™ and Mamoru Fujiwara"2
1Quamum Beam Science Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 3191195, Japan

*Research Center for Nuclear Physics, Osaka University, Mihogaoka 10-1, Ibaraki 5670047, Japan
(Received 17 July 2015; published 16 February 2016)

We propose a scheme to generate narrow-band GeV photons, y-rays, via Compton scattering of hard
x-ray photons in an x-ray free-electron laser oscillator. Generated y-rays show a narrow-band spectrum with
a sharp peak, ~0.1% (FWHM), due to large momentum transfer from electrons to photons. The y-ray beam
has a spectral density of ~10% ph/(MeV s) with a typical set of parameters based on a 7-GeV electron beam
operated at 3-MHz repetition, Such y-rays will be a unique probe for studying hadron physics. Features of

the y-ray source, flux, spectrum, polarization, tunability and energy resolution are E:,ussed 6 7 0 ! rn 0 r l I

DOI: 10.1103/PhysRevAccelBeams.19.020702 10-2 |
' X=0. ]3 Ecl20V ~=c—= |
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FIG. 3. Energy-differential cross section of Compton scattering
for 7 GeV electrons and laser photons at three different energies

TECHNO-CLS Workshop - Ferrara — Oct. 6th 2023 of 1.2 eV, 120 eV and 12 keV.



INFN Inverse Compton Scattering of photons on
relativistic electrons, 8 < 1/y

Thomson limit: X <<'1 Deep recoil Compton: X >> 1
2 1 y29°
P Eon~ (1-=-22")E,
ph =1 4 Y292 p X X

/ _1 . 2 _E’h(ﬁ=0) / _1 2
Eph<l9_;)_2y Eph_pz Eph<19—; ~ 1—} Ee

E\2
note that E.,, = mc*vV1+ X , if X>»1=>X~ (mccn;>
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( Previous Seminars: 1) Cooling of Photons in Symmetric Compton Scattering (S.C.S.)
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INFN  Torentz boosted radiation (synchrotron, ICS, FEL, etc)
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smol  B€AM Emittance

sty Grb, umt)
:

:

0.35 mm-mrad

'ﬂ

| \,

1.0 rnm-rnrad/

16

Colloquium at NECSA — Johannesburg (SA) — Oct. 3rd 2023

is strongly affected by the emittance of the electron beam

Courtesy C. Barty - LLNL
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Deep Recoil suppresses the
v20? disease and the bandwidth
broadening effect due to
electron beam emittance
according to
Petrillo-Serafini criterion

2e2
bw > —;
O-x
(Ie>Ulas
S 5
ETLEX

— €, =1mm-mrad
T €,=2 mm-mrad

ti.e =0

\ Counts

. o

9.8 10.0

10.2
E,, [MeV]
— g,=0

- — g, =1 mm-mrad

*g‘ 1 — g,=2mm-mrad

S :

| low recoil ICS
9.70 ' 9.80 9.90

E.. [MeV]

Figure 4: Bandwidth dependence on electron beam emittance. Comparison be-
tween SCS and ICS. Upper window: electron energy 10 MeV, incident photon
energy 10 MeV with 20% relative bandwidth, emitted photon energy 10 MeV,
interaction rms spot size 10 ym, normalized emittance 0 mm-mrad,l mm-mrad,
2 mm-mrad. Lower window: electron energy 659 MeV, incident photon energy
1.5eV (5-10* relative bandwidth), collimation angle= 50 urad, emitted photon
energy about 10 MeV, interaction rms spot size 10 um, normalized emittance 0

mm-mrad, 0.17 mm-mrad, 0.25 mm-mrad

EupraXia Meeting — La Biodola (Elba) — Sept. 2024



| 'NFN Large Recoil in MPP damps the normalized
emittance of the secondary generated muon beam

friricd applied -
sciences ﬁ"\"\"ﬂ

Article

Electrons and X-rays to Muon Pairs (EXMP)

Camilla Curatolo **' and Luca Serafini

INEN Sezione di Milano, via Celoria 16, 20133 Milan, Italy; luca.serafini@mi.infn.it
* Correspondence: camilla.curatolo@mi.infn °
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INFN— ACCELERATORI — Seminar — LASA - July 14th 2023
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@ Ultra-low emittance positron beams from deep recoil
memmisnerin olectron-photon collider: 5 GeV ERL vs. 5 keV FEL, X=391

up to 1013-14 ¢*/s at 50 MeV within 5% en. spread

Son Of hv FEL hv FEL 300
- ‘c’\J‘\J’ M+ “+ L
EXMP = ‘\j<:“, M_:> - — 250
R L
G> e Linac ERL 50 GeV ERL 50 GeV e Linac _@) £
ERL 500 GeV = ERL 500 GeV 3
recirculating recirctllating Ecm: 1 0 MeV
arcs arcs

E,. =346 MeV

00 0,1 02 03 o4
E(GeV)
Table 4: Future Positron Collider Projects [53, 59, 61-66].
Project CLIC ILC LHeC (pulsed) LEMMA CEPC FCC-ee
Final e* energy [GeV] 190 125 140 45 45 45.6 209 0'5 MeV/ crms
Primary e~ energy [GeV] 5 128%% (3%) 10 - 4 6 tranSV. momentum
Number of bunches per pulse 352 1312 (66*) 10° 1000 1 2 %07
Required charge [10'° e*/bunch] 0.4 3 0.18 50 0.6 2.1 €
Horizontal emittance ye, [um] 0.9 5 100 - 16 24 S 1001
Vertical emittance ye, [um] 0.03 0.035 100 - 0.14 0.09
Repetition rate [Hz] 50 5 (300%) 10 20 50 200 7
et flux [10'* e*/second] 1 2 18 10-100  0.003 0.06
Polarization No/Yes***  Yes/(No*) Yes No No No o -0,002 -0,001 0,000 0,001 0,002

® . . : - : ) py
The parameters are given for the electron-driven positron source being under consideration.

** Electron beam energy at the end of the main electron linac taking into account the looses in the undulator.

ke Polarization is considered as an upgrade option. 0‘5-1*10-7 m.rad rms norm‘ tranSV.
V. Petrillo, A. Puppin — Whizard emittance with round beam (no-cooling)



INFN FICS - Full Inverse Compton Scattering - how to
aemanenees. gChieve 1030 m/s2 acceleration to sense Unruh radiation

Full Inverse Compton Scattering: Total Transfer of Energy and Momentum from Electrons
to Photons

L. Serafini?, V. Petrillo®", S. Samsam®*

TINFN-Milano and LASA, Via G. Celoria 16, Milan, 20133, | Italy
b University of Milan, Via G. Celoria 16, Milan, 20133, , Italy

arXiv:2408.00012v1 [physics.gen-ph]| 26 Jul 2024

L4 L T =R~ T - o - o I | T My T o DS R 2 o8 ®msh 0O Sh =

FICS Incident electron Incident photon E,,

Electrons input . )Wﬁ ................. -
Z

Photons

Counts

Scattered photon E,
Stationary electron P Bh

OULPHE ssscusmemscnmsmussnsmnes ‘\){\ U e R >
z

0 10 20 30 40 50 N VVV \v
E(MeV)

FIG. 5: Full Inverse Compton Scattering (FICS). Left: energy distribution, right: angular distribution. Red: scattered photons,
blue:scattered electrons. Fp;, = 255.5keV |, E.=50 MeV, bwp, = 5%

V. Petrillo, ad-hoc developed Montecarlo code for linear QED



INFN X = 4E,E, /(mc)? A= Br-X/4 B,
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(MeV)
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010} deep recoil 1.C.S.
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ph in vacuum electron-photon collision

E’, MeV) — YE% Epn

1000 -

FICS — Full Inverse
Compton Scattering '

1 GeV

100 _ 200 MeV

E, =50 MeV

10+

E’ =511keV, T’ =0

1074 0.1
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v Eph (M@I/)
E,=1eV E, =1keV E , =0.5mc?



Full Inverse Compton Scattering: amazing power
INFN S
of 255.5 keV photons to stop ANY colliding electron

Istituto Nazionale di Fisica Nucleare

100 PeV

10

100 TeV
10 TeV

105_

0.5mc? = 255.5 keV colliding photons will
stop relativistic electrons of any energy E, !

1000 —

E ’e (MeV) the’most extreme acceleration
achieved in the universe ?7?
1 L —
C.M.B.R. e arrest | =me?
ml—u — 1 | ml-? I | | o.lm 1 | | 1005.00 | | | 1c|)8
I B E =0 5me? Eph (M@V)
E,=1 peV E,=ImeV E,=IeV ph — V.IDMC

*hadronic threshold (E.,, < 600 MeV) with 255.5 keV photons = 360 GeV
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From Feenberg-Primakoff

lisions, NV,¢ and the average energy loss, AE,®,
experienced by a primary falling radially from
infinity through the sun’s radiation field to the
orbit of the earth (#=20). It is convenient to dis-
tinguish two extreme cases: ‘‘rest-frame non-
relativistic” and ‘‘rest-frame extreme relativ-
istic,” depending on whether ¢*=~e(148 cosf) is
LKMc? or >Mc? for ¢2£2.7 RT. An equivalent
statement is

E<X2 X101 ev-protons;
E 5 X101 ev-electrons) (54)

<1 (“rest-frame extreme relativistic'').

( MCQ) 2+ >>1 (“rest-frame non-relativistic''

T ERT

In the “rest-frame non-relativistic’’ case one

4. COMPTON SCATTERING IN PROTON-PHOTON
AND ELECTRON-PHOTON COLLISIONS

We shall now discuss those collisions of the
primary cosmic-ray protons and electrons with
thermal photons which result in Compton scat-
tering. In the primary rest frame the photon
energies ¢* and ¢'* before and after scattering,
and the scattering angle x* are connected by the
relation,®

E*

€*=-——v -, (45)
(¢*)’
14+ ——(1 —cosx™)

Mc?

Correspondingly, in the earth’s frame,®

¢ =ve*(1—B cosb'*)



From Follin

3,2, Theg;z_of the Intersetion of Electrona and Photons

The interaction of electrons with radiation is juet Compton secattering
in the coordinate system moving with the electrons but the treatment is more
complicated since large energy transfers can take plsce so that fluetuations

are importent, Hence, we must compute the probaliility for various fractional

energy losses for all velues of the emergy, Similar considerations hold for
the intersctions of photons, The situstion is further complicated by the fact
that high enerpgy electrons generate photons and high energy photons generate
electrons so thet a sort of "cosmic cascade" ensues,

If we now consider a photon 4 in the moving coordinate system incident
along the negative z - axis end assume a Compton scattering, then the energy
of the scattered photon is given by

' .
(3.18) L 1 + 41 - cos ©) .

Politecnico di Milano — Theory of Relativity Course, Prof. E. Puppin, May 21st 2024
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e 1 <) dz
dp'-;l;mF) (I-S)B{l_a-r[l-m] +1-5}-a-§-d8'

“
[o* { Y 2 % T ,__5."__......} 2y
‘MH) 1.5 1-8 Y1 =8) * 1 -5)% as, 0«8 & Ty

(3,25)

] L

It may be seen that there is & large probability of large fractional energy

loss since (1 -8) occurs in the denominator, An idea of the order of

magnitude of the oross section may be obtained fram the following table,

TABLE 5
The Values of & end df from (3,23) end (3,25)
Y 0 n/4 n/2 3n /4 -
0,1 ) .028 L091 L1146 .187
S 1,0 0 ,227 .50 .63 .80
10, 0 . 745 .91 , 945 952
0.1 80,0 60,4 40,4 61,2 81,8
dd x 10%6em® | 1,0 8,00 6,28 6,00 10,32 13,32
10, 0,80 1,28 4,04 7,04 8,44

Politecnico di Milano — Theory of Relativity Course, Prof. E. Puppin, May 21st 2024



E',
E', = mc?
T'. =0

Let’s focus on the
“turning point”
where electron starts
to be back-scattered:
FICS - Full Inverse

Compton Scattering

> of y !
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From Compton scattering of photons on targets to inverse Compton
scattering of electron and photon beams

Luca Serafini® and Vittoria Petrillo

INFN Sez. Milano and Universita’ degli Studi di Milano, Dipartimento di Fisica,
Via Celoria 16, 20133 Milano, Italy

® (Received 2 May 2024; accepted 1 August 2024; published 28 August 2024)

ativistic case, where y > 1 and therefore, S is approximately
1 L Egs. Eland 10| can be rewritten as follow:

~ 3,75
2
m,c 1
E A =— ] — — 12
ph > ( 2,}/) (12)
1 1
E, =myc*(y— = — — 13
o =me (=3 = 1) (13)
FICS
Electrons 1
E. = m.c*
1 Photons
2
3
)
0 o 20 30 40 50 0 05 1.0 15
E(MeV) O(rad)

FIG. 5: Full Inverse Compton Scattering (FICS). Left: energy distribution, right: angular distribution. Red: scattered photons,
blue:scattered electrons.F,, = 255.5keV, E.=50 MeV, bw,, = 5%
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100 PeV

w1 Fe 0.5mc? = 255.5 keV colliding photons will
100 TeV stop relativistic electrons of any energy E, !
10 TeV
106 |
1000 —
E', (MeV)
L
C.M.B.R. e at rest E’,=mc?

1 1
1000.00
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The Unruh effect gives rise to a Planckian photon
spectral distribution at a temperature

ha

T=—o,
2'7TkBC

(91)

where a is the acceleration and kp the Boltzmann con-

The Unruh temperature, sometimes called the Davies—Unruh temperature, ! was derived separately by Paul Davies!®! and William Unruhl*! and is the
effective temperature experienced by a uniformly accelerating detector in a vacuum field. It is given byl€!
ha

T = ~4.06 x 1002 K-s>m ! x a,
2mwekp

where % is the reduced Planck constant, a is the proper uniform acceleration, c is the speed of light, and kg is the Boltzmann constant. Thus, for
example, a proper acceleration of 2.47 x 1020 m-s~2 corresponds approximately to a temperature of 1 K. Conversely, an acceleration of 1 m-s—2
corresponds to a temperature of 4.06 x 10721 K.

Black-hole a=10"" T=4.110-"" K
Plasma acceleration (100 GV/m) a=1.810?° T=74 K
7?7 how about FICS ??
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PHYSICAL REVIEW LETTERS week ending

PRL 97, 121302 (2006) 22 SEPTEMBER 2006

Signatures of the Unruh Effect from Electrons Accelerated by Ultrastrong Laser Fields

Ralf Schiitzhold,"* Gernot Schaller,' and Dietrich Habs?>

Unstitut fiir Theoretische Physik, Technische Universitiit Dresden, 01062 Dresden, Germany
*Department fiir Physik der Ludwig-Maximilians-Universitiit Miinchen und Maier-Leibnitz-Laboratorium, Am Coulombwall 1,

85748 Garching, Germany
(Received 18 April 2006; revised manuscript received 23 June 2006; published 22 September 2006; publisher error corrected
22 September 2006)

We calculate the radiation resulting from the Unruh effect for strongly accelerated electrons and show
that the photons are created in pairs whose polarizations are perfectly correlated. Apart from the photon
statistics, this quantum radiation can further be discriminated trom the classical (Larmor) radiation via the
different spectral and angular distributions. The signatures of the Unruh effect become significant if the
external electromagnetic field accelerating the electrons is not too far below the Schwinger limit and
might be observable with future facilities. Finally, the corrections due to the birefringent nature of the
QED vacuum at such ultrahigh fields are discussed.

Probably a,,,, = 10°%

EupraXia Meeting — La Biodola (Elba) — Sept. 2024



Unruh radiation during FICS and SCS

Apics (M/s?) = 7.310° * E (MeV)
Tvnrn-rics (K) =3.110° * E (MeV)
TUnruh—FICS (M@V) =0.026 * Ee(MeV)

going from 100 MeV up to 2 GeV electrons the Unruh photons at FICS would
cover the 2.6 — 52 MeV range (easy detection in vacuum with low background)

Agcs = 2 Appcs
but E,, must be = E, in SCS, while in FICS E,, = 255.5 keV’
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Old Physics revisited shows new regimes of extreme electron-photon
beam collisions with potentials towards:

New generation Radiation Sources based on Spectral Purification
(ICS 1n deep recoil)

Amazing tests of stopping ultra-relativistic electrons in vacuum,
attaining extreme accelerations (many orders of magnitude higher
than any other mechanism) to detect Unruh radiation

Trapping/charging plasma mirror devices with electrons via S.C.S.

Universe opacity to high energy (TeV, PeV) photons: a Compton relay
based on FICS&Breit-Wheeler cosmic cascade. Cosmic gamma ray
sources and the role of FICS.

EupraXia Meeting — La Biodola (Elba) — Sept. 2024
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C Direct Compton y=1, B=0, X=4E, /mc’
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E,n mc?

El = p ] 2 El =
ph-min = 7+ ZEph/’mCZ iLf Epn > mc ph—min >

Very energetic photons are scattered back at 255 keV

and electrons pushed to £, + 0.5mc?
mc?

E¢—max = mc? + Epn — E{Jh—min yif Epp> mc? Eg_max = ph T N

So FICS is the time reversal of Compton scattering
at infinitely large recoil

kinematics is similar for any particle interacting with photons
(protons, u, neutrinos? hv;, =0.5*m ¢ - next step in progress...)

you won't believe how much you don’t know about
the sport you've practiced all your life”
Mikey Mantle (big baseball player of the past, after Danilo Babusci INFN-LNF)
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Stopping Protons with photons
Relativistic protons require 938/2 MeV photons

In[17]:= Plot[{ficsprot/1000., bet, Tpioneff/1000., ficspprot/1000.}, {T, 1., 50.}, Frame - True]

0.30|

GeV ﬁprot

0.20|

out[17]= f
0.15

0.10¢ g :

pion |
photo-production

0.05¢

0 10 20 30 40 50

MeV
EupraXia Meeting — La Biodola (Elba) — Sept. 2024
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electrons do not have internal degree of freedom (apart from spin)
while protons do have - protons can act as detectors of Unruh thermal
photon bath (they can “click™) - but protons cannot be driven to strong
accelerations by intense lasers... FICS is the only way??

Eur. Phys. J. C (2024) 84:475 THE EUROPEAN
https://doi.org/10.1140/epjc/s10052-024-12849-9 PHYSICAL JOURNAL C ('ﬂ;e;jc;;gr

Regular Article - Experimental Physics

Measuring Unruh radiation from accelerated electrons

G. Gregorilr‘l, G. Marocco'2, S. Sarkar!, R. Bingham3 4 C. Wangf‘

! Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK

2 Lawrence Berkeley National Laboratory. 1 Cyclotron Rd, Berkeley, CA 94720, USA
3 STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 OQX, UK

4 Department of Physics, University of Strathclyde SUPA, Glasgow G4 ONG, UK

3 Department of Physics, University of Aberdeen, Aberdeen AB24 3UE, UK

Received: 13 March 2024 / Accepted: 23 April 2024
© The Author(s) 2024
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INFN 30 MeV protons vs. photon beams of
different energies (110, 120, 170 MeV)

30 MeV protons

25000
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T Photon
15000 momentum spectra
10000 —

Count

| mdent
5000 stons back—s attered
| photons
0 | % ] ! | J | . | ! T T T T T t I
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EupraXia Meeting — La Biodola (Elba) — Sept. 2024
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proton longitudinal
momentum spectra
after scattering
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Checked with CAIN modified for protons (I. Drebot, A. Bacci)

4x 1041 only interacting protons primary proton beam
_|_
3% 102 . .
Interacting protons

2% 102

0 5 10 15 20 25 30
Proton energy [MeV]

energy [MeV]

—0.0004 —0.0002  0.0000 0.0002 0.0004 0.0006
z

EupraXia Meeting — La Biodola (Elba) — Sept. 2024
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Grazie per l'attenzione

EupraXia Meeting — La Biodola (Elba) — Sept. 2024
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INFN Turning a radio-active Cobalt-60 fixed energy
gamma-ray source into a tunable sorce of gamma-rays

Previous Seminars:
3) Tunable mono-chromatic y-rays using radio-active sources

76B76 Nal Detector: ®°Co Spectrum
1.17 MeV

H 1.33 MeV

Counts

4.7% FWHM
—

U\‘ ‘ 2.5 MeV

S VIRV R . S

Energy (Mev)

EupraXia Meeting — La Biodola (Elba) — Sept. 2024
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If you ask Chat-gpt :
“can an electron transfer its total kinetic energy to a photon?”
It will answer “no” - a wrong answer

The mechanism of total energy transfer from an electron to a photon, where the electron essentially stops and transfers all its kinetic energy to a photon, is not
typically described within the framework of conventional Compton scattering. However, such an extreme scenario can be considered in specific contexts:

1. Inverse Compton Scattering: Inverse Compton scattering is a process where a high-energy electroy i w-energy photon,
resulting in a higher-energy photon. However, the electron does not typically come to a complete stop; it just loses some of its energy.

2. Photon Emission in Strong Fields: In extremely strong electromagnetic fields, such as those generated by intense laser pulses, the dynamics can be
different. The interaction of an electron with a strong electromagnetic field can lead to significant energy tra B
Compton scattering or non-linear Thomson scattering. Here, the electron can emit high-energy photons and lose a substantial amount of its kinetic energy,

3. Bremsstrahlung in Extreme Fields: When electrons decelerate rapidly in the presence of strong electromagnetic fields, they can emit radiation
(bremsstrahlung). If the deceleration is extreme, [the eleciron can lose a large fraction of iis kineiic energy io the emitied photon(s).]

4. Quantum Effects and Pair Production: In extremely high-eneray environments, guantum electrodynamics (QED) effects become significant. An electron
interacting with a high-intensity photon field could potentially|transfer a large fraction of its energy to photons, but this process might also involve phenomena
like pair production (e.g., electron-positron pairs).

ELI-NP — Magurele (Bucharest) - July 9th, 2024 Courtesy S. Sanae
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Considering the Compton interaction between photon pulses and
counter-propagating electrons, we can derive the well-known equation
r ! . ! :
for the photon energy (Eph = hw', with @' being the photon angular
frequency and 7 the reduced Planck constant) scattered at an angle 6.
Following the notation of Eq. 3 in Ref. [18], we can write:

Istituto Nazionale di Fisica Nucleare

9
B ) — (1+p)y

ph= = X E ’ (]‘)
' yz(l—ﬂcos@)+:(l+cosé))

ph

where the incident photon energy is E,, = how, f =v,/c is the dimen-

sionless electron velocity v, (c being the speed of light), y = 1/4/1 — 2
is electron Lorentz factor and X is the electron recoil factor that intro-
duces an important contribution at high energy of both incident photons
and electrons. X has been defined in [17] (eq. 4) as:

AE,E, 4vEy E

X = — =4 2 , (2)
(mye?)>  myc? ‘ E,

with mj, the electron rest mass and E, = ymyc>. Eq. (1) can be cast in a
more schematic form as a function of the incident particle energies.

E’ (1 +ﬁ) EphEe E:Ee_mCZ

 gma-Tbmreol




;NQ Electron Recoil effect in y-ray I.C.S. for Nuclear Photonics:
L CEM fails to evaluate the correct red-shift in the spectrum

without

with .
s electron rec\oil electr(/)n recoil
(b) \ /
ol (©)
) \ ELI-NP-GBS
o X<0.03
68
=
Z 21
=
(a)
] -
0- , . |
4.80 4,90 5.00
E(MeV)
Fig. 5. Spectra of the rays. (a) CAIN (b) Quantum model (c) Classical treatment in the case of beam (A) and

for the laser parameter of Table 1 and interaction angle a=1r ; rms acceptance angle 6,,s = 25urad
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So suprising that FICS was not mentioned nor described
in the previous literature on Compton direct/inverse Scattering
that
we really wanted to re-examine the first historical phases
of the studies on electron-photon QED interaction

How comes that nobody yet identified FICS as the only regime

of complete/full transfer in-vacuum of
energy and momentum between an electron and a photon?

LaSapienza - Dipartimento SBAI - July 3rd, 2024
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* ok ok ok ok

Almost at the same time as Arutyunian and co-workers

THE COMPTON EFFECT ON RELATIVISTIC ELECTRONS AND
THE POSSIBILITY OF OBTAINING HIGH ENERGY BEAMS

F.R, ARUTYUNIAN and V. A. TUMANIAN
Physical Institute of the State Committee of the Council of Ministers
of the USSR for the Use of Atomic Energy

Received 20 February 1963

A characteristic feature of the Compton effect on
relativistic electrons is the appearance of photons
with energies exceeding those of the primary photons.
As a result, even when light photons are scattered
on extremely relativistic electrons, the energies of
the scattered photons will be of the same order of
magnitude as those of the electrons. This feature
may possibly be exploited for obtaining high energy
v~ray beams in electron accelerators. An important
point to be mentioned is that the characteristics of
such y-~-beams will significantly differ from those ob-
tained by bremsstahlung.

In the Compton effect involving moving electrons

ELI-NP — Magurele (Bucharest) - July 9th, 2024

Of course in order to obtain y-beams by the method
considered here high photon fluxes will be required.
A high intensity photon source that should be feasi-
ble is the laser. At present ruby lasers seem to be
the most reliable,

For ruby laser photons (A= 6943 &) scattered on
6 GeV electrons one gets w9 max, = 848 MeV, This
effect rapidly grows with increase of the electron
energy. Thus for the same ruby lasers and ¢; = 40
and 500 GeV the maximal energy is correspondingly
w2 max. ~ 21 and 497 GeV.

Of course if lasers emitting shorter wave lengths
or other sources of high energy photons be employed,
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The thoery of Compton's effect on relativistic
electrons [1] has been considered in detail for

Volume 13, number 4

PHYSICS LETTERS

15 December 1964

First measured ICS — 500 MeV

COMPTON EFFECT ON MOVING ELECTRONS

O.F.KULIKOV, Y. Y. TELNOV, E.I FILIPPOV and M. N. YAKIMENKO
Lebedev Physical Institute, Moscow University, Moscow, USSR

Received 3 November 1964

Until recent times only the Compton effect on
electrons at rest has been investigated. The elec-

tron acceleration technigque having being improved,

there arises the possibility of investigating the
scattering of photons by electrons moving with
speeds near to the speed of light. New powerful
sources of photon-lasers make possible the scat-
tering of visible photons on electrons, moving in
an orbit of a cyclic accelerator.

telescope tube (T) which was used while position-
ing the laser beam. A photomultiplier is installed
beyond the telescope's ocular. The signals from
the photomultiplier are proportional to the energy
of the light. Gamma-quanta of scattered radia-
tion, passing through the glass plate (G), the lens
(L), the turning mirror (TM) and the collimator
(C) (diameter 15 mm) cause scintillation in the
crystal of Nal. This is registered by the photo-

e
-

interactions of laser photons with relativistic
electrons [2 - 4]. According to these authors a
head-on collision of laser radiation (y = 6943 A)
with relativistic electrons of energy of the order
of 500 MeV, will cause the appearance of y-quan-
ta of energy near 6.75 MeV, moving in the direc-

tion of motion of electrons.

Fig. 1

" |Startup Control| | Recounte
"~ ldesign| B designH scheme
Synchronizing

™ impulse
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PHYSICAL REVIEW

VOLUME 138,

Second measured ICS — 6 GeV

NUMBER 6B 21 JUNE 1965

High-Energy Photons from Compton Scattering of Light on 6.0-GeV Electrons™

Carro Bemporapnf, Ricaarp H. MILBURN, AND NOBUVUKI TANAKA
Department of Physics, Tufts University, Medford, Massachusetts

AND

MirceAa ForTiNo
Cambridge Electron Accelerator, Harvard University, Cambridge, M assachuseits
(Received 28 January 1965; revised manuscript received 1 March 1963)

Compton scattering of optical photons on 6.0-GeV electrons has been observed at the Cambridge Electron
Accelerator. A giant-pulsed ruby-laser burst of 0.2 J, impinging upon a 2-mA circulating electron current,
was observed to y;eld about 8 scattered photons per pulse. These photons acquire, through a twofold
Doppler shift, energies of hundred of MeV, and are expected to retain to a high degree the polarization of
the laser beam. The observed yield is compatible with predictions based upon the theory of Compton

scattering,.

HE scattering of optical photons from a laser on
extreme-relativistic electrons has been pre-
dicted'* to yield a high-energy output photon beam
which preserves to a high degree the polarization of the
incident light beam. Photons of energy up to 0.85 GeV
are expected from the interaction of 6943- A quanta from

P LI

mercial laser cavity, a cylindrical reflector, together with
and parallel to a single flash lamp.? The optical pumping
energy was normally between 750 and 850 J. Total
measured output energies were typically about 0.2 J
appearing in two or three giant pulses, each about 30
nsec wide d.Ild 200~ 300 nsec apart. Electncal pul%es den

P

Politecnico di Milano — Theory of Relativity Course, Prof. E. Puppin, May 21st 2024
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Theoretical and simulation studies of characteristics of a Compton light source

C. Sun™" and Y. K. Wu

Department of Physics, Duke University, Durham, North Carolina 27708-0305, USA
and DFELL, Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708-0308, USA
(Received 25 January 2011; published 21 April 2011)

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 14, 050703 (2011)

Design of narrow-band Compton scattering sources for nuclear resonance fluorescence

F. Albert,” S. G. Anderson, D. J. Gibson, R. A. Marsh, S.S. Wu, C.W. Siders, C. P.J. Barty, and F. V. Hartemann

Lawrence Livermore National Laboratory, NIF and Photon Science, 7000 East Avenue, Livermore, California 94550, USA
(Received 20 December 2010; published 13 May 2011)

Reviews of Accelerator Science and Technology \\P . .
Vol. 3 (2010) 147-163 & World Scientific
© World Scientific Publishing Company B www.worldscientific.com

DOI: 10.1142/S1793626810000440

Many studies in the literature on electron-photon beam collisions
collective/statistical properties (phase spaces, etc)

Compton Sources of Electromagnetic Radiation™

Geoffrey A. Krafft

Center for Advanced Studies of Accelerators,
Jefferson Laboratory, 12050 Jefferson Ave.,
Newport News, VA 23606, USA
krafft@jlab.org
Gerd Priebe
High Field Laboratory,

Max Born Institute, Max-Born-Strasse 2 A,
Berlin 12489, Germany
Gerd. Priebe @mbi-berlin.de
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Relevance of recoil in electron-photon
beam-beam collisions

PHYSICAL REVIEW ACCELERATORS AND BEAMS 20, 080701 (2017)

Analytical description of photon beam phase spaces
in inverse Compton scattering sources

. Curatolo,l‘:k I Drebot,1 V. Petrillo,l'2 and L. Serafini'

1INFN—Millcm, via Celoria 16, 20133 Milano, Italy

*Universita degli Studi di Milano, via Celoria 16, 20133 Milano, Italy
(Received 9 March 2017; published 3 August 2017)

PHYSICAL REVIEW ACCELERATORS AND BEAMS 21, 030701 (2018)

Simulation of inverse Compton scattering and its implications
on the scattered linewidth

N. Ranjan,' B. Terzi¢,”" G. A. Krafft,”* V. Petrillo,”” I. Drebot,” and L. Serafini*

' Princess Anne High School, Virginia Beach, Virginia 23462, USA
2Depn:trtmem of Physics, Center for Accelerator Science,
Old Dominion University, Norfolk, Virginia 23529, USA
*Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
4I’NJF'ﬂN-Mil.sm, via Celoria 16, 20133 Milano, Italy
SUniversita degli Studi di Milano, via Celoria 16, 20133 Milano, Italy

®™ (Received 17 November 2017; published 6 March 2018)

LaSapienza - Dipartimento SBAI - July 3rd, 2024



INFN

Istituto Nazionale di Fisica Nucleare

% applied ﬁ“\pfy

sciences

Article

Electrons and X-rays to Muon Pairs (EXMP)

Camilla Curatolo *©' and Luca Serafini
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Symmetric Compton Scattering: A way towards plasma heating and
tunable mono-chromatic gamma-rays

L. Serafini *", A. Bacci®", C. Curatolo®®, 1. Drebot*®, V. Petrillo *¢, A. Puppin *¢,

M. Rossetti Conti*"™*, S. Samsam *°
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Largest value of recoil factor X achieved in
experiments so faris X=1.8 at SLAC in 1999

PHYSICAL REVIEW D, VOLUME 60, 092004

Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses

C. Bamber,* S. J. Boege,f T. Koffas, T. Kotseroglou,zl: A. C. Melissinos, D. D. Mv:eyerh()fer,§ D. A. Reis, and W. Ragg"
Department of Physics and Astronomy, University of Rocliester, Rochester, New York 14627

C. Bula,ﬂ K. T. McDonald, and E. J. Prebys
Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544

D. L. Burke, R. C. Field, G. Horton-Smith,** T. E. Spencer, and D. Walz
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309

S. C. Berridge, W. M. Bugg, K. Shmakov,T+ and A. W. Weidemann
Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996
(Received 1 February 1999; published 8 October 1999)

We report on measurements of quantum electrodynamic processes in an intense electromagnetic wave,
where nonlinear effects (both multiphoton and vacuum polarization) are prominent. Nonlinear Compton scat-
tering and electron-positron pair production have been observed in collisions of 46.6 GeV and 49.1 GeV
electrons of the Final Focus Test Beam at SLAC with terawatt pulses of 1053 nm and 527 nm wavelengths
from a Nd:glass laser. Peak laser intensities of ~0.5x 10'* W/cm? have been achieved, corresponding to a
value of ~0.4 for the parameter p=¢E, . /mwyc and to a value of ~0.25 for the parameter Y ,=E} JE i
=eE} hilm*c?, where EJ . is the rms electric field strength of the laser in the electron rest frame. We present
data on the scattered electron spectra arising from nonlinear Compton scattering with up to four photons
absorbed from the field. A convolved spectrum of the forward high energy photons is also given. The observed
positron production rate depends on the fifth power of the laser intensity, as expected for a process where five
photons are absorbed from the field. The positrons are interpreted as arising from the collision of a high-energy
Compton scattered photon with the laser beam. The results are found to be in agreement with theoretical
predictions. [S0556-2821(99)02519-9]

PACS number(s): 13.40.—f, 1220 Fv, 13.10.+q, 42.65.—k

Colliding the XFEL photon beam (12 keV) with the
19.5 GeV electron beam would achieve X=3585 !!!
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Ejp® (T, < 500 keV) Ejp° (T, <100 MeV

Photon Energy vs. Kinetic Energy of Electron (Non-Relativistic Case)
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FICS lay-out
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. maximum electron energy loss very unlikely

'
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y(1 + ﬁ)EﬁéCS ﬂﬁtec2

FICS
(1 = BcosO)yym.c? + (1 + cosQ)Eph
2D
After scattering, the kinetic energy 7, of the electron (valide
fory> 1and 6 = %) is given by:

’ 2, pFICS
T,=(y—-1)m.c +Eph —

2

MeC
’ e 202
= v o (22)
2
For a small angle 6, where cosf ~ 1 — %2, T simplifies to the
following form:
4y — 4y —1
T, =m?———— (23)
8y" -4y
2 Eeperiles r .
As 7y approaches infinity, 7] converges to:
JFICS Y MeC’
f i _ (24)
2
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Figure 6: Kinetic energy of the scattered electron T/ as function of the Lorentz
factor

B(T.=255 keV) =0.75
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electrons undergoing FICS with photons back-scattered
between 6=0 and 6=1/y have 3 <0.75

back-scattered photons in FICS have energy £, in the range
E’ph(6’=0) =E,(1-12y ; E’ph(6’=]/7/) =E,(1-1/y)
to be compared with low recoil ICS, where

E’(6=0) = 47E, ; E’(6=1/y)=2pE,

ELI-NP — Magurele (Bucharest) - July 9th, 2024
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Distribution of Longitudinal Momentum (Ps) of Scattered Electrons in Whizard Distribution of Longitudinal Momentum (Ps) of Scattered Photons in Whizard
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aowmeameisee . hack-scattering of the photon 1s most likely in deep recoil
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if an electron/photon interaction occurs in deep recoil it must be back-scattering
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Longitudinal momentum Pz

Moneta Spectrum of Scattered photons for Ee=200MeV
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fICS _ 625  (1L+VXTW o s
42 A+ (1+ 51 +92) o

y6
Vi+X . 2 .
Compton cross section and o ia the Thomson cross section [9].

¢ or _ _4X 1
Taking the fact that —- = D X>1l,y>land@ < P

Eq.28 simplifies to the following form:

where ¥ ~ is the acceptance angle, o is the unpolarized

1 4
fFICS(Q — _) s 1
¥ dnX+5

(29)

Taking into consideration that the recoil X for FICS is equal
to 2y (see Tab. 1 in Ref. [3]). Eq. 29 can be written as:

IS = 29) = (30)
Iny + 1.19
0.80
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3\ 0.60 -
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4

Figure 7: FICS fraction factor fF1¢5 = “’VTT as function of the Lorentz factor

Y.
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Grazie per l'attenzione

ELI-NP — Magurele (Bucharest) - July 9th, 2024
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e V. Petr1llo, ad-hoc developed Montecarlo code for linear QED

1) low recoil 2) DICS (X=1) 3) deep recoil (X=8)
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FIG. 4: (i) Inverse Thomson Scattering (ITS). Left: energy distribution, right: angular distribution. Red: scattered photons,
blue:scattered electrons. £,,=1.5 eV, £.=50 MeV, bw,;, = 5%. (ii) Democratic Inverse Compton Scattering (DICS). E,,=1.3
keV, E. = 50MeV, bw,r, = 5%. (iii) Deep Recoil Scattering (DRS). E,,=10 keV, F.=50 MeV, bw,, = 5%.
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1) electron back-scattering (X=12.000) 2) SCS (X=40.000)
3) Direct Compton (X=1.2-10°)
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FIG. 6: (i) Electron Back-Scattering (EBS). Left: energy distribution, right: angular distribution. Red: scattered photons
blue:scattered electrons. E,, = 15MeV, E. = 50MeV, bw,, = 5%.(il) Symmetric Compton Scattering (SYCS): E,;, = 50
MeV, E.=50 MeV, bw,, = 5%. (iii) Relativistic Direct Compton Scattering: E,,=150 MeV, E.=50 MeV, bw,;, = 5%

Politecnico di Milano — Theory of Relativity Course, Prof. E. Puppin, May 21st 2024
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Spectral Purification of incident Channeling Radiation
Compact, sustainable, mono-chromatic gamma-ray source
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FIG. 8: Left window: Spectrum of the incident photon similar to channelling radiation in crystals, with colliding electron
beams of energy F. = 2MeV,3.5MeV,5MeV, and 6 MeV . Central window: Momentum spectrum of scattered photons. Right

window: Momentum spectrum of scattered electrons
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Deep recoil cancels the y?6? disease/correlation, therefore strongly
decreases the dependence of the back-scattered photon beam
bandwidth on the electron beam transverse emittance
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FIG. 9: Collimated energy spectrum. E. = 1.9M eV, curve magenta:f,,q.. = 0.257rad, red:0,0. = 0.5rad,blue: 000 = lrad
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week ending

PRL 115, 025504 (2015) PHYSICAL REVIEW LETTERS 10 JULY 2015

Investigation of the Electromagnetic Radiation Emitted by Sub-GeV Electrons
in a Bent Crystal

L. Bandiera, E. Bagli, G. Germogli, V. Guidi, and A. Mazzolari

INFN Sezione di Ferrara and Dipartimento di Fisica e Scienze della Terra,
Universita degli Studi di Ferrara Via Saragat 1, 44122 Ferrara, Italy
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Broad-band incident
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aonmeamaisen - gt Jow recoil ( 72 keV photon beam heats up 5 keV e beam)
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INFN  Poli-chromaticity implies using mono-chromators of
different kinds (bragg-reflectors, collimators) to select a
narrow bandwidth line from a broad-band spectrum

Synchrotron
storage ring

Istituto Nazionale di Fisica Nucleare
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Fig. 184. Drawing of the configuration of low energy collimator made up of 12 tungsten adjustable slits with a
relative 30° rotation each
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0

Mission of African Light Source initiative and

Compact Light Source based on STAR model
Courtesy S. Connell






INFN Converting X-ray beams to tunable monochromatic
i v -rays using Symmetric Compton Scattering and
FICS with spectral purification

* Electron-photon interaction in linear QED (in vacuum) is characterized by 2
dimensionless parameters:
Recoil X=42hv/E, and Asymmetry A= fy-X/4 =y’ (f-hvE)

*  When Recoil is large (X» 1) we have “cooling of photons”, i.e. monochro-

maticity of incident electron beam is mapped into the scattered photon beam

*  When the scattering is symmetric (4=0, the divide between Inverse and Direct
Compton Scattering) the energy-angular correlation (so-called °&° disease)
vanishes and, at low recoil, the electron beam is heated by the photon beam

 SCS or Quasi-S A4/l I.C.S. X/yray Sources work at X<I and A» I >d will allow to

extend the phot
(10-40 MeV)

o low energy e-
STAR (350 keV) Xgpp < 2.610° A > 104 7 8y

ELI-NP (20 MeV) Xy ap < 0.026 Apypnp > 2.4-10°

Politecnico di Milano — Theory of Relativity Course, Prof. E. Puppin, May 21st 2024



CINEN' we are not considering in this seminar non-linear
effects due to photon (laser) pulse intensity

— q c A
Aplinear = 7.2 \/ 37 37 V 21peak

Ipeak [ %]
1018

A .
Ao circular = —z1/ 15 3% v/ Tpeak Courtesy Marcel Ruijter

toag 0.1

= 0.85)[um]

¥ Bjaser = 0.1m.c*
RR

X

! \%

a0 Schwinger
HZDR
LOP
LBNL
ELSA
BATF
ELL
SPARC
Linear Compton Thomx

e ELI-NP

Linear Thomson
10° 10° 10* 100 10°
Y X -->

Politecnico di Milano — Theory of Relativity Course, Prof. E. Puppin, May 21st 2024
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e s .
v?(1 — B cosB) +§(1 + cos 0)

X= 4yE,, /E,
A= By-X/i = ¥ (B~E,, /E,)

4(y%+A)+X

E . =
PR ™ 4(y2—Acos 0)+X ph

A=0, i.e. Symmetric Compton Scattering cancels the *& correlation



INFN An invariant view at Compton effect - 1

Istituto Nazionale di Fisica Nucleare ( a ny i n e ’/’ti a l ’/’ef: f’/’a m e )
Simulation of inverse Compton scattering Phys. Rev. AB (2018)
and its implications on the scattered linewidth 21, 030701

N. Ranjan!, B. Terzié?2,* G. A. Krafft?3, V. Petrillo®®, I. Drebot?, and L. Serafini?
! Princess Anne High School, Virginia Beach, Virginia 23462, USA
2 Department of Physics, Center for Accelerator Science,
Old Dominion University, Norfolk, Virginia 23529, USA
3 Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
4INFN-Milan, via Celoria 16, 20183 Milano, Italy
5 Universita degli Studi di Milano, via Celoria 16, 20133 Milano, ITtaly

4‘)/h(1) (0 w(1 + B)2?
2 Y¥2(1 — Becos)(1+ B) + (14 cos)(1 + )
me (3)

Arthur Compton,
Nobel Prize 1927

B =

A # o \‘

1<olated e- cannot ab<orb a nhoton




INFN An invariant view at Compton effect - 2

Istituto Nazionale di Fisica Nucleare ( any l.nel" tial r ef: f T ame)
w'(0) = — (
X — Ayhw (6) v?(1 — BcosB)(1+ 3) + %(l +cosf)(1+B)
mc? (:

Direct Compton
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Let’s consider the condition of maximum energy/momentum
transfer between electron and photon, i.e. 0 =0

Y21+ B)

E{?h — Eph

y?(1 — B cosB) +§(1 + cos 0)

5 0
Epn

: 2y
Eph — ) X
v:(1-p)+>

Politecnico di Milano — Theory of Relativity Course, Prof. E. Puppin, May 21st 2024



INFN 0 = 0 corresponds to:

Istituto Nazionale di Fisica Nucleare . 14
maximum energy of back-scattered photon Ep, .«

and
minimum energy of electron after scattering E,_,,;,,
ph—max — 1+ X

Thomson limit: X <<'1 Deep recoil Compton: X >> 1

E! = 4y2F : 1
ph—max — *Y Lpn Eph—max ~ |1 —)—( E,

ETOT_E +E Ee mm+Eh —max
/ 4')/ZEph
Ee—min_E+E Eph max_Ee+Eph_ 1+ X

Politecnico di Milano — Theory of Relativity Course, Prof. E. Puppin, May 21st 2024
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the total energy £, = E, + £,

E, =100 MeV




@ Energy Budget towards y-rays with
B high spectral density

« 25 GeV electrons would be needed to generate
2 MeV photons via synchrotron radiation
(highest spectral density S 102 s'eV-!, very small bdw 10-4)

850 MeV electrons were used to Channeling Radiate
2 MeV y-rays (high S 10°-10° s-'eV-1, broad bdw 10 %)

350 MeV es are needed to Inverse Compton Scatter
2 MeV y-rays (good S 10%-10° s™'eV-!, small bdw 10-?)

3.5 MeV electrons to bremsstrahlung
2 MeV y-rays (poor S 1 s”'eV-!, very broad bandwidth)

2 MeV es to Symmetric Compton Scatter a photon target
2 MeV y-ray photons (S 10* s'eV-) spectral purification!
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when recoil X 1s large electron swaps with photon,
maximum energy loss by the electron in favour to the photon

. | 4E,,E,2/(mc?)?
/Ph—max 1+ 4EphEe/(mC2)2 <l Ee—minz Ee
_ , 1+(1+X)E,,/E
ify »1 Eemin = Ee 1_|_Xp e\
X>>1
Ee—minz Eph

Politecnico di Milano — Theory of Relativity Course, Prof. E. Puppin, May 21st 2024



mc?/2 photons can stop any relativistic electron !
The fractional energy loss of FICS 1s 100%

Politecnico di Milano — Theory of Relativity Course, Prof. E. Puppin, May 21st 2024
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10

100 TeV
10 TeV

108

0.5mc? = 255.5 keV colliding photons will
stop relativistic electrons of any energy E, !

’ 2
—mec
[ ! ! ! | ! ! ! | |f ! ¢ ! |

1000.00
—= 2
E,, =0.5mc

*hadronic threshold (E_,, < 600 MeV) with 255.5 keV photons = 360 GeV




IN FN REVIEWS OF MODERN PHYSICS, VOLUME 77, OCTOBER 2005
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The interaction of relativistic particles with strong crystalline fields

Ulrik 1. Uggerhgj

Department of Physics and Astronomy, University of Aarhus, Denmark

(Published 20 October 2005)

E. Unruh effect and Hawking radiation

The equivalence between the temperature of the
Hawking radiation from a black hole and the tempera-
ture of the vacuum in a constantly accelerated frame
(Davies, 1975; Unruh, 1976) has been widely discussed—
the so-called Unruh effect. As channeled particles are
subject to enormous fields and accelerations, outlines for
possible detection schemes using strong crystalline fields
have been proposed (Darbinian ef al., 1989; MacDonald,
1998). Darbinian et al. (1989) estimated that a planar-
channeled positron with y=10° will emit Unruh radia-
tion as intense as the incoherent bremsstrahlung. These
estimates, however, do not take into account the subtle-
ties connected to the inherently nonconstant accelera-

tion for a channeled particle.
E 50 TeV electrons !!!!

Politecnico di Milano — Theory of Relativity Course, Prof. E. Puppin, May 21st 2024
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Politecnico di Milano — Theory of Relativity Course, Prof. E. Puppin, May 21st 2024



Ecy = 2\/mec2yhv

o Total cross-section for QED ( e,y) reactions
107 G---oTTTTTTTTTTTTTTTTTTTTTTIITTITTTTTTTTT
106 e"+y—e +tet/eT ___ 1pp

e +y-oe +y - ICS
10°4 —— MPP
e 1 T
S04 0T
5 ]
S 103 |
1024 |
101 i
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E' (GeV)
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10

2;‘ot (mb ar n)

0.5

Total cross-sections for Compton and
Bethe-Heitler
Eop=235.5 keV—(E; from 50 MeV to S

\ GeV) ]
e +y—oe +et/e”

e +y—>e +tvy

| 1 1 1 1 | 1 1 1 | 1 1 1 1 | 1 1 1 | 1
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E, (MeV)
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FICS low relativistic
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INFN FICS very low relativistic
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Inverse Compton Sources rivaling/overcoming

—

104, = mt_ —
10”37 Bl S D
1024

Synchrotron Light Sources at photon energies above 80-100 keV

— ¢ ThomXy
1 E SXRL X i
) ~ 1
3 10 E /,.-'5 i _/buu(

g 0] HB LPP ' - /| LMMLs

i 1 q and DPP ——

20

»

—

a8

7100 1000

Figure 1: Brightness of several radiation sources as a function of the photon energy. $: Photon numb&rfsfmmﬂfmradzf 0.1%
I.C.S. Sources (LTI-CLS, ThomX, STAR, UH-FLUX and BriX8§) are compared to Synchrotron Light Sources and the most
performing X-ray tube so far (Metal Jet)



Ja-4h Generation Light Sources

e Synchrotron light sources: < 50 keV, > 50 ps (100 m, 300 M$)

e X-ray FEL (LCLS): energy <25 (50?) keV, 1-100 fs (1 km, 1 G$)

B
g
b
> b

? ?‘-9“\:7.

n L 28 "7"\
X x v
e R ~29

e New approach: inverse Compton scattering (ICS) 20-200 keV , sub-
ps, (10 m, 10 M$) — sometimes called Laser Synchrotron since a
laser pulse substitutes the magnetic undulators

ICS & Photon Colliders - PhD School on Accel. Phys. - INFN/LaSapienza - February 2022
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INFN Rivaling with Synchr. Light Sources for energies above 50 keV

g ICS vs. other sources
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INFN
C Large Recoil in ICS damps the effect of large

bandwidth incident photon beams onto the bandwidth of
scattered photons

PHYSICAL REVIEW ACCELERATORS AND BEAMS 20, 080701 (2017)

Analytical description of photon beam phase spaces
in inverse Compton scattering sources

G. Curatolo,l‘* I Drebot,l M Petrillo,l'2 and L. Serafini'

11’NFN~M1'lcm, via Celoria 16, 20133 Milano, Italy
2Universita degli Studi di Milano, via Celoria 16, 20133 Milano, Italy
(Received 9 March 2017; published 3 August 2017)

equivalent to FELs Kim-Pellegrini crit. on 3D inhomogeneous effects on photon bandwidth

AEy _ [qﬂ/\/12+ P2 ]2+[(z+x>gr (Mzﬂo>4+( a3/3 )2
1+ 14+ 12P2 27wy 1+d3/2

Eph 1 —|‘ X }/
beam o diffraction ‘
: : Incident
collimation en. spread A
angle beam p otons non
emittance en. spread linearity

CNR-ILIL Laboratory Seminar, Pisa — CNR Area della Ricerca, Dec. 1st 2023
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Politecnico di Milano — Theory of Relativity Course, Prof. E. Puppin, May 21st 2024
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where is the Continental Divide
between
Compton Scattering
and
Inverse Compton Scattering?

when the electron becomes
a projectile (as in ICS)
instead of
a target (as in Compton)?

Does it depend only on electron energy?
No, it depends only on asymmetry in colliding momenta

CNR-ILIL Laboratory Seminar, Pisa — CNR Area della Ricerca, Dec. 1st 2023



INFN CM rest frame moves with

()

CM rest frame moves with the electron in
Inverse Compton, FEL, Synchrotron light

)

(M rect fr clowe down in Inv Comnton with deen recoil

)

CM rest frame is steady in Symmetric Compton

>)

M. Rossetti Conti

CNR-ILIL Laboratory Seminar, Pisa — CNR Area della Ricerca, Dec. 1st 2023
















INFN LEon  X=4/E,,/E,

Istituto Nazionale i Fisica Nucleare Ee /,———’/ A = ﬁ;g_y4 = 72 (ﬂ— E p h / E (,)

Mph = 4(y?2+A)+X

Ph ™ 4(y2-4cos 0)+x P

L.C.S. low recoil X<<I E'n—max ~ 4v* Epp
A~fp~p-12. | 4y .
L.C.S. deep recoil X>>1 E ph—max ~ e, XEph ~[1-— ¥ E,

A~ BP-X/4 ~ ¥-1/2- X/

24
E . ~FE. |1+
S.C.S. (A=0) or ph—max p"( 1+ ﬁ))/Z)

quasi-SCS (|A| <<I) , 2A
N E e—min ~ Ee — Eph 1+ ,3))/2
/ 1 1
D.C. y=1, B=0, A=-X/4 Eph—min = T332 Evn = 754 Epn

CNR-ILIL Laboratory Seminar, Pisa — CNR Area della Ricerca, Dec. 1st 2023
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INFN
C Direct Compton y=1, B=0, X=4E,/mc’

E,n mc?

El = p ] 2 El =
ph-min = 7+ ZEph/mCZ iLf Epn > mc ph—min >

Very energetic photons are scattered back at 255 keV
and electrons pushed to £, + 0.5mc?

E] = 2+E,, —E! f E 2 E! = +_mCZ
e-max — McC ph ph—min »Lf Epp>> MC® Ee_imax = Epp 5

General Formula expressed in terms of energies of
primary colliding particles, valid for any y, A, X, 0

- (1+p)ELE,
Ph (1 —fcosO) E, + (1 +cos ) E,
E’ . (1 + .B)EphEe
PR=MAxX = (1 — B)E, + 2E,p

CNR-ILIL Laboratory Seminar, Pisa — CNR Area della Ricerca, Dec. 1st 2023




INFN X= 4EE,/(mc?)’

Istituto Nazianale i Fisica Nucleare (1 _I_ ﬁ ) E D h E e

E{oh—max = (1— B)E, + 2E,, Ee =10 MeV

100

(MeV)

10+

wn
»

0.511 MeV

0.10 -

104 0.001 0.010 0.100 1 10 100

0.0 bl

CNR-ILIL Laboratory Seminar, Pisa — CNR Area della Ricerca, Dec. 1st 2023
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PRTMAX T (1= BEe +2Epn | =50 MeV

100:..
(MeV) |

10:— —
1__ -

0.10 | |

0.01 L L o L N L L
1074 0.001 0.010 0.100 1 10 100

E,, (MeV)

255 keV photon to stop electron of any E, !



C(INFR (1 + B)EpnE,
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PR=max = (1 — B)E, + 2E,p

! ! (1 + ,B)EphEe
Ee_min = Ee + Epn — Eph—max = Ee + Epp — (1—B)E, + 2E,

. | 4E,,E,2/(mc?)?
/Ph—max 1+ 4EphEe/(mC2)2 <l Ee—?’ninz Ee
_ , 1+(1+X)E,n/E
ify »1 Eemin = Ee 1_|_Xp e\
X>>1
Ee—minz Eph

2

] mc / 2
lf Ep = T — (1 — ,B)Ee = Ee—min= mc

255 keV photon to stop electron of any E, !
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2
. C !
if Epp, = - (1-BE, = E._,;,=mc?
_ mc* 1 ,
if y » 1 and E,, = — |1 - = E,_,..,,= mc?

. . mc? 1
[f the incident photon energy 1s given by  E,p, = — 1-— ”

any relativitic electron (1.e. ¥ >> I) will be stopped
in a head-on collision with such a photon

255 keV photons will stop electrons of any E,as far as y>> 1



2

INFN Eyn = mzc [1 — %] to stop any (relativistic) electron
Incidentally, the condition 1s almost the same needed to make the
total energy in the lab ref. frame (LAB) equal to the total energy in
the electron rest frame (ERF)

LAB total energy E; . = ymc’ + E,
ERF total energy Eppp = mc’ + 2y E,

ELAB EERF

if

mc? 2y — 2 mc
E,, = —

PR 2 2y —1 yo0 2

CNR-ILIL Laboratory Seminar, Pisa — CNR Area della Ricerca, Dec. 1st 2023



INEN  Generalization to any Collision Angle @, a@ =7z head-on
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PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 17, 020706 (2014)

Dual color x rays from Thomson or Compton sources Each electron, characterized by normalized velocity f,

V. Petrillo,'? A. Bacci,! C. Cura[olo" M. Ferrario,” G. Gatti,> C. Maroli,? J. V. Rau.* fOImlI]g an angle 95 Wlth the Z axis, scatters phOtOIlS Wlth

3 .
C. Ronsivalle,” L. Seraﬁnl C. Vaccarezza,” and M. Venturelli® frequency v gl\/en by
'INFN Milano, Via Celoria, 16 20133 Milano, Italy P

YUniversita degli Studi di Milano, Via Celoria, 16 20133 Milano, Italy
3LNF, INFN Via E. Fermi, 40 Frascati (Roma), Italy
*ISM-CNR Via del Fosso del Cavaliere, 100 00133 Roma, Traly /
SENEA Via E. Fermi, 45 Frascati (Roma), Italy | F— s ( l )
(Received 12 September 2013; published 28 February 2014) 1 - n / + ( )
ﬂ’IC

where 1, is the frequency of the incident laser photon, ¢;
the unit vector of its direction, n is the direction of the
scattered photon, / the Planck constant and y; the electron
Lorentz factor before the scattering. The last term in the

4y%(1 — B cos a)
4)/2(1 fcosB)+ X(1—cosacosf + smasm@)

p

: ‘A+4)
=, head-on ® Exn = Epn

vy?(1 — B cosB) +%(1 + cos 0)

in agreement with Eq.3 in N. Ranjan et al., PRAB 21, 030701 (2018)
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o 4y4(1 — B cos a)
PR 4y2(1 — ﬁcos@)+X(1—cosacos€+smasm9)

1
ify>»>1land f=1—-5=andf K1

2y
1—cosa
w? ()

E, = E
ph — ph
1+ 1262 +X(1 o “)
oo s (5=
lf 6 =0 Eph: Eph—max E{)h—max — T —cosa Eph
1+x( ¢ )

in agreement with Eq.1 in . Drebot et al., EPL 120, 14002 (2017)

CNR-ILIL Laboratory Seminar, Pisa — CNR Area della Ricerca, Dec. 1st 2023
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Ezloh—max —
X<<] ®

o=, head-on ®

a=n2 , X<<] ®

1 —cosa
w? ()

E
_ ph
1+ X (1 ;os a)
, ,(1—cosa
Eph—max =4y > Eph
4 2
E’ Y

ph—-max — 1_|_—XEph

CNR-ILIL Laboratory Seminar, Pisa — CNR Area della Ricerca, Dec. 1st 2023



INFN y-ray in-vacuum mono-chromatization, SCS at large Recoil
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Symmetric Compton Scattering suppresses
the ¥& correlation

Photons are scattered at same energy at any angle
Lorentz Boost is damped
Radiation emission is intrinsically mono-chromatic
Poli-chromaticity of incident photon beam is

transferred to the scattered electron beam and
viceversa (photon cooling, electron heating)

CNR-ILIL Laboratory Seminar, Pisa — CNR Area della Ricerca, Dec. 1st 2023



@ SCS - What Matters?

Istituto Nazionale di Fisica Nucleare

* SCS may allow to design a laser-less y-ray source for nuclear
photonics, aka ELI-NP-GBS, using a compact low energy
Linac (20-30 MeV versus 750 MeV)

* It can be used to extend the photon energy range of Light
Sources and Free Electron Lasers up to MeV’s photon beams
(LCLS 12 keV, XFEL 19 keV, ESRF 100 keV = 1-10 MeV)

* Follow-ups in Astrophysics: Synchro-Compton catastrophe
(see Malcolm Longair, High Energy Astro-Physics)

* Applications to Plasma Physics: additive trapping of
electrons (positrons?) in magnetic bottles

CNR-ILIL Laboratory Seminar, Pisa — CNR Area della Ricerca, Dec. 1st 2023



Colliding a gaussian distributed (20% rms spread) broad-band
radiation beam, representing the first peak
of channeling spectrum at 2 MeV,
with a low energy (variable) electron beam (2,3,5,10 MeV)
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Mono-chromatization, Tunability

CNR-ILIL Laboratory Seminar, Pisa — CNR Area della Ricerca, Dec. 1st 2023
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Collective instabilities and high-gain regime
in a free electron laser

R. Bonifacio *, C. Pellegrini, L.M. Narducci

CNR-ILIL Laboratory Seminar, Pisa — CNR Area della Ricerca, Dec. 1st 2023



Nuclear Inst. and Methods in Physics Research, A 909 (2018) 309-313
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Contents lists available at ScienceDirect

Nuclear Inst. and Methods in Physics Research, A

journal homepage: www.elsevier.com/locate/nima

ELSEVIER

A muon source based on plasma accelerators SpeCtral puriﬁcation towards
L. Serafini?, I. Drebot ®*, A. Bacci?, F. Broggi?, C. Curatolo?, tunabl e mono- ChI‘OIIlatl C

V. Petrillo®¢, A.R. Rossi?, M. Rossetti Conti ®¢

2 INFN - Sezione di Milano, via Celoria 16, 20133 Milano, Italy .
I et e i o o s, y-rays with laser plasma
deep recoil ICS-SCS?
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Fig. 2. Scheme of source.
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Turning a radio-active Cobalt-60 fixed energy
gamma-ray source into a tunable sorce of gamma-rays

76B76 Nal Detector: ®°Co Spectrum
1.17 MeV

H 1.33 MeV

Counts

4.7% FWHM
—

U\‘ ‘ 2.5 MeV

A P S A ... Y

Energy (Mev)

INFN— ACCELERATORI — Seminar — LASA - July 14th 2023
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— . Trapping electrons (positrons) into a magnetic bottle by SCS
at low recoil ( 72 keV photon beam heats up 5 keV e beam)

V2 Bmax
E < \/Bmin 1,

—— Beam envelope (log scale)
—— Pre-focusing solenoid
10 Magnetic Bottle field

-2.0
3 —
E 15
> g N
& 107 o)

1.0

-05

10 —_— -00

0 1 2 3 4 5
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Figure 8: This image shows the transverse envelope of the primary electron beam (in blue) before, during, and after
propagation in the MB field (in gold the Bz field distribution). Before the bottle, the weak field (in green) of a solenoid,
peaking at 2.5 mT, is visible and is used for matching into the bottle.

CNR-ILIL Laboratory Seminar, Pisa — CNR Area della Ricerca, Dec. 1st 2023



i L S.C.S. — incident photon energy vs.
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incident electron kinetic energy
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CNR-ILIL Laboratory Seminar, Pisa — CNR Area della Ricerca, Dec. 1st 2023
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Figure 9: Representation of the momenta of the electrons that interacted with the photons in SCS regime. a) 3D
representation of the momenta with their projections. b) Distribution of the momenta respect the ¢ angle around the
z-axis. c) Distribution of the momenta respect the ¢/ angle with the z-axis.
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CNR-ILIL Laboratory Seminar, Pisa — CNR Area della Ricerca, Dec. 1st 2023



INFN

60% of scattered electrons are (additively) trapped
into the magnetic bottle (w.o. any external field)
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Figure 10: Evolution of the longitudinal position of 100 particles tracked in the MB, 60% where trapped.

CNR-ILIL Laboratory Seminar, Pisa — CNR Area della Ricerca, Dec. 1st 2023
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Conclusions

If S.C.S. will be the base of
Next Generation hard-X-Ray and gamma-rays,
we are not yet able to say,

but chances are quite promising.

If S.C.S. will play a role in plasma heating,

soon we’ll be able to say.
Within Astro-physics context more studies

must be pursued to check about

Compton Catastrophe and related topics.

CNR-ILIL Laboratory Seminar, Pisa — CNR Area della Ricerca, Dec. 1st 2023



Undulator radiation (33 keV from Elettra) vs.
20 MeV e- beam from BriXSinO ERL
about 10° photons/s in 1% bdw (100 MHz rep rate)

Total #phot = 2.57e+01 Number and BW vs theta

i

T T T
00 01 0z 03 o4 05

o 2500 5000 7300 10000 12500 15000 17500 i
Photon energy [keV] 6 [rad]

V. Petrillo, I. Drebot (INFN-Milan)
S. Dimitr1 (Elettra)

TECHNO-CLS Workshop - Ferrara — Oct. 6th 2023



Symmetric Compton (CSC)

(10 MeV Linac vs. bremsstrahlung/betatron/
channeling/coherent bremsstrahlung beam)

Electron energy=10.013 MeV, Photon energy=10 MeV, AE , /E=20%
Q=1.e-9C N _X=2.*10% oc,=1 um rep-rate=200 MHz
HWHM =10 keV =0.1%
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Channeling 2023 Conference — Riccione — June 2023 Vittoria Petrillo — COWlp ton montecarlo
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Initial Electron energy=611 keV, Initial Photon energy=335 keV , AE

Symmetric Compton at moderate recoil

Symmetric Compton (p=-Pphor);
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SCS and large recoil factors are both needed to mono-chromatize

broad band incident photon beams
Channeling 2023 Conference — Riccione — June 2023
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FEL beam vs. compact Linac

Initial Electron energy=20 MeV, Initial Photon energy=20 keV , AE ; /E=0.0001
X=6.12
50000
200000
40000+ 180000,
160000
30000 140000 ]
5 120000
S £ 100000-
20000 60000 |
60000+
10000 40000
200004
0- 0 : . . . .
0 2 4 6 8 10 12 14 16 18 00 05 10 15 20 25 30
photon energy (MeV) theta(rad)
6,0+
5,51 12,5x10° 18
5,01 16
4,5 N_X 42,0x10° =14
4,0 N X 2 12
3,57 11,5x10° s
3 307 ’ 8 10
3 25 11,0x10° 5 8
8 2,0- ’ § 6
]'g: 15,0x10’ g 4
051 2
0,01 100 04 U
0-0 0-1 0-2 0-3 0-4 0-5 00 05 10 15 20 25 30 35
’ ! ! ’ ’ ! Thet d
Theta(rad) oa (=)

up to 10% photons/s at 17 MeV with 50 keV bdw: S 2000 s-leV-!




@ X-ray beam from Light Source vs. compact Linac

Istituto Nazionale di Fisica Nucleare

Electron energy=20 MeV, Photon energy=100 keV , AE; /E=0.001 X=30.63
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up to 107 photons/s at 17 MeV with 50 keV bdw

Channeling 2023 Conference — Riccione — June 2023
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Figure 12: Relative fraction of scattered photons within the acceptance angle
(blue curve) and relative bandwidth of the selected photon beam within the
angular acceptance (green curve).
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_  Inverse Compton Sources, Overview, Theory, Main

Technological Challenges — Photonic Colliders

* New Generation of X/¥ray beams via electron-photon beam
collisions for advanced applications in medicine/biology-
material science/cultural heritage/national security and
fundamental research in nuclear physics and high energy
physics (e-%, 7~y colliders, pol. e” beams, hadron. physics, etc)

* Inverse Compton Sources (ICS) are e/photon colliders aimed at
producing secondary beams of photons

* Several Test-Facilities world-wide: after a decade of machine
test&development we are entering the era of User Facilities in
X-ray imaging and yray Nuclear Physics and Photonics

ICS & Photon Colliders - PhD School on Accel. Phys. - INFN/LaSapienza - February 2022



C Challenges of electron-(optical)photon colliders as X/y
beam Sources using Compton back-scattering

* Need of high peak brightness/high average current electron
beams (cmp. FEL’ s drivers) fsec-class synchronized and pm-
urad-scale aligned to high peak/average power laser beams

* Main goal for Nuclear Physics and Nuclear Photonics:
Spectral Densities > 10° N ,/(s-eV)
photon energy range 1-20 MeV, bandwidths 103 class

* Main goal for Medical Applications with X-rays: tunability in
the 20-120 keV range, good mono-chromaticity (1-10 %), high
flux (10" min., 10'? for radio-imaging, 10" for radio-therapy)

ICS & Photon Colliders - PhD School on Accel. Phys. - INFN/LaSapienza - February 2022
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iNen  Photon / Particle Beams: diffraction, envelope, matching, co-propagation.
(% Example: TEM,, Gaussian Laser mode (circ. pol. M?=1 diffr. limited)
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Spectra of the rays. (a) CAIN (b) Quantum model (c) Classical treatment in the case of beam (A) and
for the laser parameter of Table 1 and interaction angle a=1r ; rms acceptance angle 6,,s = 25urad
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THE

PHYSICAL REVIEW

The change in wave-length due to scattering.—Imagine, as in Fig. 14,

Incident quantum,
momentum = hv/c

Fig. 1 A Fig. 1 B

that an X-ray quantum of frequency », is scattered by an electron of
mass m. The momentum of the incident ray will be Avq/c, where ¢ is



)
INFN The Classical E.M. view (Maxwell eq.): Thomson Sources as

synchrotron radiation sources with electro-magnetic undulator

FEL’ s and Thomson/Compton Sources common mechanism:
collision between a relativistic electron and a (pseudo)electromagnetic wave
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ICS & Photon Colliders - PhD School on Accel. Phys. - INFN/LaSapienza - February 2022



ICS are the most effective “photon accelerators” (boost twice than FELS)
“4y’ boost effect”  E,, = 4°E,
with T=100MeV (y=197) E ., =1.2 eV = E,, =186 keV

ICS & Photon Colliders - PhD School on Accel. Phys. - INFN/LaSapienza - February 2022 Courtesy A. Variola



Spread of incidence angle
INFN | .
: Incoming photon beam (resembles emittance)
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Figure 5: Simulations of SCS with an incoming photon beam displaying a correlation between angle of propagation
and photon energy. The results are shown through 9 plots arranged in three rows as in fig. |[4| The angular correlation of
the incoming photon beam is removed in the interaction thanks to the high recoil factor (X ~ 1500).
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Radiation is emitted into a narrow cone
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C To transform to the Lab ref. system
we need to compute 7.

&

Then apply a Lorentz transformation

Pphx = Ppp, Sin 0™ cos ¢”

Pphy = pph sin 8™ sin @™

ICS & Photon Colliders - PhD School on Accel. Phys. - INFN/LaSapienza - February 2022



INFN I.C.S. : Inverse Compton Scattering

Laser photons o Gamma rays

Inverse Compton Scattering: why Inverse?

(direct) Compton Scattering is performed by an energetic
photon (X-rays) interacting with an atomic electron (eV)

Inverse Compton Scattering is performed by an energetic
electron (MeV-GeV) onto a visible (eV) photon (“inverse”
refers to the reaction kinematics, not the dynamics)

TECHNO-CLS Workshop - Ferrara — Oct. 6th 2023
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Rscs A > 0.ICS

applied
M sciences
Article

State of the Art of High-Flux Compton/Thomson X-rays Sources

Vittoria Petrillo 1'2'*'+, Illya Drebot 1’*, Marcel Ruijter 1’*, Sanae Samsam 1’*, Alberto Bacci 1, Camilla Curatolo 1,
Michele Opromolla L2(0), Marcello Rossetti Conti 1), Andrea Renato Rossi 1) and Luca Serafini Lt

LUV T uU1Vv) LVIeV
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Figure 2: 3D representation of the value of the recoil factor X as a function of the interacting electron kinetic energy
(1) and of the incident photon energy. The line shows the recoil value in SCS conditions

INFN- ACCELERATORI — Seminar — LASA - July 14th 2023



INFN Symmetric Compton

Istituto Nazionale di Fisica Nucleare Scaling Of phOtOn energy VS. electron kinetic energy

E, = p.c = fymc? (MeV)
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Channeling 2023 Conference — Riccione — June 2023



@ But Arthur Compton fundamental experiments, leading to
“ Compton scattering interpretation and the proof of light
quanta existence (the photon) wouldn’t simply be possible
without the discovery of X-rays by Roentgen (1895), who in
turns couldn’t obtain his result without the vacuum tubes
invented by William Crookes, who in turns exploited the glass-
to-metal welding technique invented by Heinrich Geissler.

The Paradigm of Particle Accelerators!
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INFN Symmetric Compton

Scaling of X, recoil factor, vs. electron kinetic energy
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INFN Fixed recoil X=1531
Moving away from Symmetric Compton

incident AE . /E=20%
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INFN Fixed recoil X=1531

Istituto Nazionale i Fisica Nucleare going fr()m SCS tO ICS
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INFN How do we derive fundamental I.C.S. formula?

Istituto Nazionale di Fisica Nucleare ’ B y2 (1 _I_ ﬁ)
Eph — X Eph
¥Y2(1 — B cosB) + Z(l + cos 0)

that 1s valid for head-on collision, where electron and photon
counter-propagate along z-axis

( Ee+Eph=Eé+‘

cpe — Epp = + Epp, cos? -
0 =cpxat+ Eppsind

A

conservation of total momentum and total energy

r
ymc? + Epp —\/c2.+ cz‘+ m2c4+'

mc?By — cos ¥

\ 0 = c‘-lc—: sind9
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‘ < mc?Py — Epp, = cpge + Epy cos ¥
0 = cpye + Epp sind

c = sin? 9
P = B
CQ‘ = (Bymc? — Epy, —.Cos 19)2

()/mc2 + Epp — EI’,h)2 =

Ep7 sin® 9 + (Bymc? — Epp, — E,

2
pcosV) +m2ct

ymc?(Epp —‘) —E

ph =
p,‘ cos 9 — Bymc?(Epp +‘cos 9)

E
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P —— 2 / / —
Istituto Nazionale di Fisica Nucleare ym C ( E p h — E p h ) _— E p h E p h —

EpnEpp cosd — Bymc?(E,, + E,p, cos 9)

Epn [ymc2(B cosd — 1) —Ep, (1 + cos9)| = —E,, yme?(1 + B)
1+
By = y(1+p) By,

Epn
y(l—ﬁcosﬁ)+ 2(1+cosr9)

4)/Eph B 4EphEe

X —
mc? (mc?)?

, (1+pB)y?

¥Y?(1 — B cos?9) +§(1 + cos V)
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C Eph = Eph

¥%(1 — B cos ) +§(1 + cos9)

. , I /
NB.it0=n E’,=E, forany y E, = E,+ Eph — Eph

Compton Scattering of X-rays on atomic electrons

E
B=0,y=1 = E,=—7 :
1+Z(1+COS19)

h

Inverse Compton Scattering of photons on relativistic electrons

1
)/>>1,,B~1—ﬁ =

ZyzEph
1

X
21 _ _ 2 A
1% [1 cos Y (1 2)/2)] +7 (1 + cosV)

r _
Eon =
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o -

2Y%Epp

Fon = 1% [1—cosﬁ(1——)]+ (1 + cos®)

p

192
J<K1; cosd = 1—7 =

, 2y“Epn
Eph
192 1 X
[ 22| T2
J
/ 4]/2Eph

E' =
PR 1 + 9292 + X
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To obtain the momentum components of the emitted particles in the laboratory frame
we have to apply the - transformations to the momenta values in CM:

7 Yom (K™ + k302 + k;ﬁy + k2 B:)
14 ’%Mﬁ2 ’Y(%M,B:rﬁy '}%Mﬁmﬁz
k. = k*B, + kX ke ik -
i 1+voMm Y1+ vcm L +vem

< 2 1 2 2 2 (C.0.6)
x cYemPePy | a1t YomPBy | 1EMPyBs
k, =k k=== + k k, —————

. A o $1+'YCM+ Y 1+ycMm . “1+vcMm

2 2 2 2
. « Yo Bz Bz « Yo By Bz g Ty
k: =k"f. g e
. pzrom 1 +voMm Y14+ vem 14+ voMm

where 3 oM = (Bz, By, B=). If the scattering is head-on along the =z axis, the above trans-
formations simplify in

| V= k*’YCM (1 + ﬁCM COSQ*)
kr = k™ sin 6™ cos ¢*
X (C0.7)

k, = k" sin §* sin ¢"

k. — k’*'YCM (/SC‘M + Ccos 9*) .

\
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C A look at 4-vectors (head-on collision) ‘
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Inverse Compton Symmetric Compton
E, < ymc?; y >1 E, = p.c = fymc*

P, = {ymc, 0,0, Bymc} P, = {ymc, 0,0, Bymc}
P, ={Ey/c,0,0,—E,/c} P, = {Bymc, 0,0, —Bymc}
Pior = {ymc + ET(‘), 0,0, Bymc — ET(‘)} Prot = {(1 + B)ymc, 0,0,0}

Fon = ¢ |Peot ® Prag

fixed target 14 B)X collider
Ecm = mc?® |1+ ( 218) ~ V. = Eiqp Eom =0+ ﬁ)ymcz
V cm — Ecm

~ mc?/1+ 4yE, /mc?

Yem 2Y/N1+X 5 Yeom TS50 | Yem =1
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The four-momentum of a particle is defined as p = (% P, pz),

where E is the total energy of the particle, ¢ is the speed of light in
vacuum, and p,,p,,p, are the components of the particle’s momentum
along the x, y, z axes respectively.

Let us consider the case of a head-on collision between a photon and
a counter-propagating electron along the z-axis. Before the collision, the
electron and the photon have the following four-momenta:

P. = (ymyc,0,0, fymye) ,
i (EPE En ) (25)
pph:(TEOaOE__)a

c

and the total four-momentum is:

E,, E,,
Ptot = (}’mof it TP,O,O,ﬁ}meC = Tp) : (26)
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The energy available in the center of mass E_ , in terms of the recoil

factor introduced in Eq. (2), is:

X
Ecm = c/Ptot * Prot zmﬂcz\/(l +ﬁ)5 +1=

2E,E,;
= mﬂcz\/(l +h)——— +1.

(mgc?)?

(27)

The different regimes of Compton scattering can be analyzed in terms

of their center of mass energy E_, .
For the DC regime (=0, y = 1):

Yo
E.m_pc = ”’1002\/ P4l (28)

myc?
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On the opposite side, in the ICS regime (f ~ 1), we obtain:

ECH’I—ICS = m0C2 \V X + | m{]CzJ

Finally, for the SCS regime (E, = SE, = fymgc?):

4}’Eph

> L. (29)

mﬂc

E,_scs =1+ pymyc*. (30)

In this peculiar situation, E_, « y like in a collider. Being y.,, = E; ;/ E ..
the Lorentz boost factor associated to the center of mass reference
frame. In SCS we have y_,, =1 (because E;,;_scs = E.,—scs), meaning
that the center of mass of the system is at rest in the laboratory system,
and the radiation produced here has the same angular and spectral dis-
tribution seen by a detector at rest in the lab. On the other hand, DC
and ICS exhibit a dependence of the available energy E_,, typical of a
fixed target collision, where E,,, scales like E,,, « /T,, where T, is the
projectile kinetic energy. ICS regime is characterized by y_,, > 1 since
the center of mass reference frame is almost traveling with the electron
(as shown in Ref. [17] y.,, = 7/(1 + X)).
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