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ª Jet reconstruction algorithm 
ª Anti-kt with R = 0.3 

ª Jet background subtraction 
ª ATLAS-like (FastJet): kt with R = 0.4 

ª CMS-like: variant of “noise/pedestal subtraction” technique 
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ª CMS-like subtraction method (Kodolova et al EPJC50 (07) 117): 
ª Background estimation: 

ª Variant of an iterative “noise/pedestal subtraction” technique: 

ª 1.1) Background estimation in each stripe (<ET
tower(η)>, σT

tower) 

ª 1.2) Correct each cell by: ET
tower* = ET

tower - <ET
tower(η)> - σT

tower 

ª 2.1) Jet finding algorithm over the activated towers 

ª 3.1) Background estimation excluding jets from the previous list with ET > ETjets 

ª 3.2) Correct each cell with the new values 

ª 4.1) Re-run of jet finding algorithm 
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ª CMS-like subtraction method (background with ET<ETjets) 
ª Background estimation: 

ª CMS tune: ETjets = 15 GeV in step 3.1) 

ª For our background: ETjets goes from 40 to 70 GeV (depends on T) 
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values… 
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values of σ 
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from ALICE 

corrected for 
neutral 

particles) 

ALICE:1201.2423 



Comparison of the background subtraction 
methods (ATLAS-like and CMS-like) 
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ª Influence of the fluctuations on AJ: 
ª CMS data from 2011 run (arXiv:1102.5022: particle flow method and R = 0.3) 
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ª Influence of the fluctuations on AJ: 
ª CMS data from 2011 run (arXiv:1102.5022: particle flow method and R = 0.3) 
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can account for 
the large 

asymmetry  
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19 Jet Reconstruction in HIC 

CMS-like 
subtraction: 

Smaller 
dependency 

with 
fluctuations up 

to σ~11 (red 
and black 

curve) 

ª Influence of the fluctuations on AJ: 
ª CMS data from 2011 run (arXiv:1102.5022: particle flow method and R = 0.3) 

FastJet 
subtraction: 
Fluctuations 
goes in the 

same direction 
than data but 
no “realistic” 
fluctuations 

can account for 
the large 

asymmetry  



20 Jet Reconstruction in HIC 
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ª Influence of the fluctuations on ΔΦ: 
ª CMS data from 2010 run (arXiv:1102.1957: no particle flow method and R = 0.5) 



21 Jet Reconstruction in HIC 

FastJet 
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does not 
present 

significant 
deviations 
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ª Influence of the fluctuations on ΔΦ: 
ª CMS data from 2010 run (arXiv:1102.1957: no particle flow method and R = 0.5) 
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ª Influence of the fluctuations on ΔΦ: 
ª CMS data from 2010 run (arXiv:1102.1957: no particle flow method and R = 0.5) 



ª Influence of v2 and v3 with the FastJet subtraction 
method: 

23 Jet Reconstruction in HIC 
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ª qhat = 0 GeV2 fm-1 

27 Jet Reconstruction in HIC 

simulations and minimizing the biases in the distributions (observed in [36]) for the minimum

ET of the leading jet that we will use, see below. Samples of 10
5
pp events are generated in this

way for each set of parameters. Jet are defined within the Les Houches accords [51] for particles

species and lifetimes.

We will examine the following observables (details of the kinematical cuts will be provided when

the results are presented):

• The inclusive jet spectrum in ET .

• For the hardest and next to hardest jets in the event, with transverse energies ET1 and ET2

respectively, the distribution in azimuthal angle between them and the dijet asymmetry

defined as

AJ =
ET1 − ET2

ET1 + ET2
. (1)

• The missing pT defined as

�
/p
�
T

�
=

�

i

−piT cos(φi − φleading jet), (2)

where the sum runs over all particles in the event with transverse momenta piT and az-

imuthal angle φi.

2.2 Toy model for the background

Background subtraction is needed in order to attempt to define the jet characteristics when

the jet is produced together with an underlying event. In order to study the influence of the

background subtraction method on the different jet observables, we will use a toy model for

generating particles uniformly in pseudorapidity η and azimuthal angle φ along the full detector

acceptance, with the following distribution in transverse momentum pT which smoothly matches

a thermal-like spectrum to a power law:

f(pT ) ∝
�

e
−pT /T , pT ≤ αT,

e
−α

�
αT
pT

�α
, pT > αT.

(3)

Here α = 6 is a power suggested by perturbative calculations and T is a ’temperature’ which

determines the exponential behavior of the soft part of the spectrum. We generate in this way

N particles with a mean value corresponding to a multiplicity dN/dη = 2100 which is allowed

to fluctuate from event to event following a Gaussian distribution with a dispersion of a 4 % of

the mean value. In this way we attempt to mimic the 0 ÷ 10 % centrality class [40–42] in the

experimental analyses [22–25].

In Eq. (3), the temperature is used as a free parameter to control the main characteristics of the

background, the average level of energy deposition (ρ) and its fluctuations (σ) per unit area in

η × φ. These two quantities are computed through the median and the 1-σ half-width through

FastJet with active areas, the kt algorithm with Rbkg = 0.4 and ET > ETmin = 1 GeV for

the particles considered in the definition of jets. The corresponding values can be seen in Fig.

1.

Additionally, this simple toy model allows the introduction of an event-by-event azimuthal modu-

lation in the form of elliptic v2 and triangular v3 flow that we will do in order to check the sensitiv-

ity of the reconstruction to those additional fluctuations that exist in a real event [43–45].

It should be stressed than by no means this model is realistic: the transverse momentum spec-

trum does not describe experimental data [11,12], the
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the track momentum composition of the subleading jets is
seen, confirming the calorimeter determination of the dijet
imbalance. The biggest difference between data and simulation
is found for tracks with pT < 4 GeV/c. For PYTHIA, the
momentum in the subleading jet carried by these tracks is
small and their radial distribution is nearly unchanged with
AJ . However, for data, the relative contribution of low-pT
tracks grows with AJ , and an increasing fraction of those
tracks is observed at large distances to the jet axis, extending
out to !R = 0.8 (the largest angular distance to the jet in this
study).

The major systematic uncertainties for the track-jet corre-
lation measurement come from the pT-dependent uncertainty
in the track reconstruction efficiency. The algorithmic track
reconstruction efficiency, which averages 70% over the pT >
0.5 GeV/c and |η| < 2.4 range included in this study, was
determined from an independent PYTHIA + HYDJET sample,
and from simulated tracks embedded in data. Additional un-
certainties are introduced by the underlying event subtraction
procedure. The latter was studied by comparing the track-jet
correlations seen in pure PYTHIA dijet events for generated
particles with those seen in PYTHIA + HYDJET events after
reconstruction and background subtraction. The size of the
background subtraction systematic uncertainty was further
cross checked in data by repeating the procedure for random
ring-like regions in 0%–30% central minimum bias events.
In the end, an overall systematic uncertainty of 20% per bin

was assigned. This uncertainty is included in the combined
statistical and systematic uncertainties shown in Fig. 13.

C. Overall momentum balance of dijet events

The requirements of the background subtraction procedure
limit the track-jet correlation study to tracks with pT >
1.0 GeV/c and !R < 0.8. Complementary information about
the overall momentum balance in the dijet events can be
obtained using the projection of missing pT of reconstructed
charged tracks onto the leading jet axis. For each event, this
projection was calculated as

!p‖
T =

∑

i

−pi
T cos (φi − φLeading Jet), (2)

where the sum is over all tracks with pT > 0.5 GeV/c and
|η| < 2.4. The results were then averaged over events to
obtain 〈!p‖

T〉. No background subtraction was applied, which
allows this study to include the |ηjet| < 0.8 and 0.5 < pTrack

T <
1.0 GeV/c regions not accessible for the study in Sec. III B.
The leading and subleading jets were again required to have
|η| < 1.6.

In Fig. 14, 〈!p‖
T〉 is shown as a function of AJ for two

centrality bins, 30%–100% (left-hand side) and 0%–30%
(right-hand side). Results for PYTHIA + HYDJET are presented
in the top row, while the bottom row shows the results for PbPb
data. Using tracks with |η| < 2.4 and pT > 0.5 GeV/c, one
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FIG. 14. (Color online) Average
missing transverse momentum 〈!p‖

T〉 for
tracks with pT > 0.5 GeV/c, projected
onto the leading jet axis (solid circles).
The 〈!p‖

T〉 values are shown as a func-
tion of dijet asymmetry AJ for 30%–
100% centrality (left-hand side) and
0%–30% centrality (right-hand side).
For the solid circles, vertical bars and
brackets represent the statistical and
systematic uncertainties, respectively.
Colored bands show the contribution
to 〈!p‖

T〉 for five ranges of track pT.
The top and bottom rows show results
for PYTHIA + HYDJET and PbPb data,
respectively. For the individual pT

ranges, the statistical uncertainties are
shown as vertical bars.

024906-14

S. CHATRCHYAN et al. PHYSICAL REVIEW C 84, 024906 (2011)

the track momentum composition of the subleading jets is
seen, confirming the calorimeter determination of the dijet
imbalance. The biggest difference between data and simulation
is found for tracks with pT < 4 GeV/c. For PYTHIA, the
momentum in the subleading jet carried by these tracks is
small and their radial distribution is nearly unchanged with
AJ . However, for data, the relative contribution of low-pT
tracks grows with AJ , and an increasing fraction of those
tracks is observed at large distances to the jet axis, extending
out to !R = 0.8 (the largest angular distance to the jet in this
study).

The major systematic uncertainties for the track-jet corre-
lation measurement come from the pT-dependent uncertainty
in the track reconstruction efficiency. The algorithmic track
reconstruction efficiency, which averages 70% over the pT >
0.5 GeV/c and |η| < 2.4 range included in this study, was
determined from an independent PYTHIA + HYDJET sample,
and from simulated tracks embedded in data. Additional un-
certainties are introduced by the underlying event subtraction
procedure. The latter was studied by comparing the track-jet
correlations seen in pure PYTHIA dijet events for generated
particles with those seen in PYTHIA + HYDJET events after
reconstruction and background subtraction. The size of the
background subtraction systematic uncertainty was further
cross checked in data by repeating the procedure for random
ring-like regions in 0%–30% central minimum bias events.
In the end, an overall systematic uncertainty of 20% per bin

was assigned. This uncertainty is included in the combined
statistical and systematic uncertainties shown in Fig. 13.

C. Overall momentum balance of dijet events

The requirements of the background subtraction procedure
limit the track-jet correlation study to tracks with pT >
1.0 GeV/c and !R < 0.8. Complementary information about
the overall momentum balance in the dijet events can be
obtained using the projection of missing pT of reconstructed
charged tracks onto the leading jet axis. For each event, this
projection was calculated as

!p‖
T =

∑

i

−pi
T cos (φi − φLeading Jet), (2)

where the sum is over all tracks with pT > 0.5 GeV/c and
|η| < 2.4. The results were then averaged over events to
obtain 〈!p‖

T〉. No background subtraction was applied, which
allows this study to include the |ηjet| < 0.8 and 0.5 < pTrack

T <
1.0 GeV/c regions not accessible for the study in Sec. III B.
The leading and subleading jets were again required to have
|η| < 1.6.

In Fig. 14, 〈!p‖
T〉 is shown as a function of AJ for two

centrality bins, 30%–100% (left-hand side) and 0%–30%
(right-hand side). Results for PYTHIA + HYDJET are presented
in the top row, while the bottom row shows the results for PbPb
data. Using tracks with |η| < 2.4 and pT > 0.5 GeV/c, one
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T〉 values are shown as a func-
tion of dijet asymmetry AJ for 30%–
100% centrality (left-hand side) and
0%–30% centrality (right-hand side).
For the solid circles, vertical bars and
brackets represent the statistical and
systematic uncertainties, respectively.
Colored bands show the contribution
to 〈!p‖

T〉 for five ranges of track pT.
The top and bottom rows show results
for PYTHIA + HYDJET and PbPb data,
respectively. For the individual pT

ranges, the statistical uncertainties are
shown as vertical bars.
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the track momentum composition of the subleading jets is
seen, confirming the calorimeter determination of the dijet
imbalance. The biggest difference between data and simulation
is found for tracks with pT < 4 GeV/c. For PYTHIA, the
momentum in the subleading jet carried by these tracks is
small and their radial distribution is nearly unchanged with
AJ . However, for data, the relative contribution of low-pT
tracks grows with AJ , and an increasing fraction of those
tracks is observed at large distances to the jet axis, extending
out to !R = 0.8 (the largest angular distance to the jet in this
study).

The major systematic uncertainties for the track-jet corre-
lation measurement come from the pT-dependent uncertainty
in the track reconstruction efficiency. The algorithmic track
reconstruction efficiency, which averages 70% over the pT >
0.5 GeV/c and |η| < 2.4 range included in this study, was
determined from an independent PYTHIA + HYDJET sample,
and from simulated tracks embedded in data. Additional un-
certainties are introduced by the underlying event subtraction
procedure. The latter was studied by comparing the track-jet
correlations seen in pure PYTHIA dijet events for generated
particles with those seen in PYTHIA + HYDJET events after
reconstruction and background subtraction. The size of the
background subtraction systematic uncertainty was further
cross checked in data by repeating the procedure for random
ring-like regions in 0%–30% central minimum bias events.
In the end, an overall systematic uncertainty of 20% per bin

was assigned. This uncertainty is included in the combined
statistical and systematic uncertainties shown in Fig. 13.

C. Overall momentum balance of dijet events

The requirements of the background subtraction procedure
limit the track-jet correlation study to tracks with pT >
1.0 GeV/c and !R < 0.8. Complementary information about
the overall momentum balance in the dijet events can be
obtained using the projection of missing pT of reconstructed
charged tracks onto the leading jet axis. For each event, this
projection was calculated as

!p‖
T =

∑

i

−pi
T cos (φi − φLeading Jet), (2)

where the sum is over all tracks with pT > 0.5 GeV/c and
|η| < 2.4. The results were then averaged over events to
obtain 〈!p‖

T〉. No background subtraction was applied, which
allows this study to include the |ηjet| < 0.8 and 0.5 < pTrack

T <
1.0 GeV/c regions not accessible for the study in Sec. III B.
The leading and subleading jets were again required to have
|η| < 1.6.

In Fig. 14, 〈!p‖
T〉 is shown as a function of AJ for two

centrality bins, 30%–100% (left-hand side) and 0%–30%
(right-hand side). Results for PYTHIA + HYDJET are presented
in the top row, while the bottom row shows the results for PbPb
data. Using tracks with |η| < 2.4 and pT > 0.5 GeV/c, one
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sees that indeed the momentum balance of the events, shown
as solid circles, is recovered within uncertainties, for both
centrality ranges and even for events with large observed dijet
asymmetry, in both data and simulation. This shows that the
dijet momentum imbalance is not related to undetected activity
in the event due to instrumental (e.g., gaps or inefficiencies in
the calorimeter) or physics (e.g., neutrino production) effects.

The figure also shows the contributions to 〈"p‖
T〉 for five

transverse momentum ranges from 0.5–1 GeV/c to pT >
8 GeV/c. The vertical bars for each range denote statistical
uncertainties. For data and simulation, a large negative
contribution to 〈"p‖

T〉 (i.e., in the direction of the leading jet)
by the pT > 8 GeV/c range is balanced by the combined
contributions from the 0.5–8 GeV/c regions. Looking at the
pT < 8 GeV/c region in detail, important differences between
data and simulation emerge. For PYTHIA + HYDJET both
centrality ranges show a large balancing contribution from the
intermediate pT region of 4–8 GeV/c, while the contribution
from the two regions spanning 0.5–2 GeV/c is very small. In
peripheral PbPb data, the contribution of 0.5–2 GeV/c tracks
relative to that from 4–8 GeV/c tracks is somewhat enhanced
compared to the simulation. In central PbPb events, the relative
contribution of low and intermediate-pT tracks is actually
the opposite of that seen in PYTHIA + HYDJET. In data, the
4–8 GeV/c region makes almost no contribution to the overall
momentum balance, while a large fraction of the negative
imbalance from high pT is recovered in low-momentum tracks.

The dominant systematic uncertainty for the pT balance
measurement comes from the pT-dependent uncertainty in
the track reconstruction efficiency and fake rate described in
Sec. III B. A 20% uncertainty was assigned to the final result,
stemming from the residual difference between the PYTHIA
generator level and the reconstructed PYTHIA + HYDJET tracks
at high pT. This is combined with an absolute 3 GeV/c
uncertainty that comes from the imperfect cancellation of the
background tracks. The background effect was cross checked
in data from a random cone study in 0%–30% central events
similar to the study described in Sec. III B. The overall
systematic uncertainty is shown as brackets in Figs. 14 and 15.

Further insight into the radial dependence of the momentum
balance can be gained by studying 〈"p‖

T〉 separately for tracks
inside cones of size !R = 0.8 around the leading and
subleading jet axes, and for tracks outside of these cones.
The results of this study for central events are shown in Fig. 15
for the in-cone balance and out-of-cone balance for MC and
data. As the underlying PbPb event in both data and MC is
not φ symmetric on an event-by-event basis, the back-to-back
requirement was tightened to !φ12 > 5π/6 for this study.

One observes that for both data and MC an in-cone
imbalance of 〈"p‖

T〉 ≈ −20 GeV/c is found for the AJ > 0.33
selection. In both cases this is balanced by a corresponding
out-of-cone imbalance of 〈"p‖

T〉 ≈ 20 GeV/c. However, in
the PbPb data the out-of-cone contribution is carried almost
entirely by tracks with 0.5 < pT < 4 GeV/c, whereas in MC
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FIG. 15. (Color online) Average
missing transverse momentum 〈"p‖

T〉 for
tracks with pT > 0.5 GeV/c, projected
onto the leading jet axis (solid circles).
The 〈"p‖

T〉 values are shown as a function
of dijet asymmetry AJ for 0%–30%
centrality, inside (!R < 0.8) one of the
leading or subleading jet cones (left-
hand side) and outside (!R > 0.8)
the leading and subleading jet cones
(right-hand side). For the solid circles,
vertical bars and brackets represent the
statistical and systematic uncertainties,
respectively. For the individual pT

ranges, the statistical uncertainties are
shown as vertical bars.
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ª Only Q-PYTHIA simulation (without background) 
ª qhat = 0 GeV2 fm-1 

ª In qualitative agreement with CMS simulation 

28 Jet Reconstruction in HIC 

S. CHATRCHYAN et al. PHYSICAL REVIEW C 84, 024906 (2011)

the track momentum composition of the subleading jets is
seen, confirming the calorimeter determination of the dijet
imbalance. The biggest difference between data and simulation
is found for tracks with pT < 4 GeV/c. For PYTHIA, the
momentum in the subleading jet carried by these tracks is
small and their radial distribution is nearly unchanged with
AJ . However, for data, the relative contribution of low-pT
tracks grows with AJ , and an increasing fraction of those
tracks is observed at large distances to the jet axis, extending
out to !R = 0.8 (the largest angular distance to the jet in this
study).

The major systematic uncertainties for the track-jet corre-
lation measurement come from the pT-dependent uncertainty
in the track reconstruction efficiency. The algorithmic track
reconstruction efficiency, which averages 70% over the pT >
0.5 GeV/c and |η| < 2.4 range included in this study, was
determined from an independent PYTHIA + HYDJET sample,
and from simulated tracks embedded in data. Additional un-
certainties are introduced by the underlying event subtraction
procedure. The latter was studied by comparing the track-jet
correlations seen in pure PYTHIA dijet events for generated
particles with those seen in PYTHIA + HYDJET events after
reconstruction and background subtraction. The size of the
background subtraction systematic uncertainty was further
cross checked in data by repeating the procedure for random
ring-like regions in 0%–30% central minimum bias events.
In the end, an overall systematic uncertainty of 20% per bin

was assigned. This uncertainty is included in the combined
statistical and systematic uncertainties shown in Fig. 13.

C. Overall momentum balance of dijet events

The requirements of the background subtraction procedure
limit the track-jet correlation study to tracks with pT >
1.0 GeV/c and !R < 0.8. Complementary information about
the overall momentum balance in the dijet events can be
obtained using the projection of missing pT of reconstructed
charged tracks onto the leading jet axis. For each event, this
projection was calculated as

!p‖
T =

∑

i

−pi
T cos (φi − φLeading Jet), (2)

where the sum is over all tracks with pT > 0.5 GeV/c and
|η| < 2.4. The results were then averaged over events to
obtain 〈!p‖

T〉. No background subtraction was applied, which
allows this study to include the |ηjet| < 0.8 and 0.5 < pTrack

T <
1.0 GeV/c regions not accessible for the study in Sec. III B.
The leading and subleading jets were again required to have
|η| < 1.6.

In Fig. 14, 〈!p‖
T〉 is shown as a function of AJ for two

centrality bins, 30%–100% (left-hand side) and 0%–30%
(right-hand side). Results for PYTHIA + HYDJET are presented
in the top row, while the bottom row shows the results for PbPb
data. Using tracks with |η| < 2.4 and pT > 0.5 GeV/c, one
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FIG. 14. (Color online) Average
missing transverse momentum 〈!p‖

T〉 for
tracks with pT > 0.5 GeV/c, projected
onto the leading jet axis (solid circles).
The 〈!p‖

T〉 values are shown as a func-
tion of dijet asymmetry AJ for 30%–
100% centrality (left-hand side) and
0%–30% centrality (right-hand side).
For the solid circles, vertical bars and
brackets represent the statistical and
systematic uncertainties, respectively.
Colored bands show the contribution
to 〈!p‖

T〉 for five ranges of track pT.
The top and bottom rows show results
for PYTHIA + HYDJET and PbPb data,
respectively. For the individual pT

ranges, the statistical uncertainties are
shown as vertical bars.
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the track momentum composition of the subleading jets is
seen, confirming the calorimeter determination of the dijet
imbalance. The biggest difference between data and simulation
is found for tracks with pT < 4 GeV/c. For PYTHIA, the
momentum in the subleading jet carried by these tracks is
small and their radial distribution is nearly unchanged with
AJ . However, for data, the relative contribution of low-pT
tracks grows with AJ , and an increasing fraction of those
tracks is observed at large distances to the jet axis, extending
out to !R = 0.8 (the largest angular distance to the jet in this
study).

The major systematic uncertainties for the track-jet corre-
lation measurement come from the pT-dependent uncertainty
in the track reconstruction efficiency. The algorithmic track
reconstruction efficiency, which averages 70% over the pT >
0.5 GeV/c and |η| < 2.4 range included in this study, was
determined from an independent PYTHIA + HYDJET sample,
and from simulated tracks embedded in data. Additional un-
certainties are introduced by the underlying event subtraction
procedure. The latter was studied by comparing the track-jet
correlations seen in pure PYTHIA dijet events for generated
particles with those seen in PYTHIA + HYDJET events after
reconstruction and background subtraction. The size of the
background subtraction systematic uncertainty was further
cross checked in data by repeating the procedure for random
ring-like regions in 0%–30% central minimum bias events.
In the end, an overall systematic uncertainty of 20% per bin

was assigned. This uncertainty is included in the combined
statistical and systematic uncertainties shown in Fig. 13.

C. Overall momentum balance of dijet events

The requirements of the background subtraction procedure
limit the track-jet correlation study to tracks with pT >
1.0 GeV/c and !R < 0.8. Complementary information about
the overall momentum balance in the dijet events can be
obtained using the projection of missing pT of reconstructed
charged tracks onto the leading jet axis. For each event, this
projection was calculated as

!p‖
T =

∑

i

−pi
T cos (φi − φLeading Jet), (2)

where the sum is over all tracks with pT > 0.5 GeV/c and
|η| < 2.4. The results were then averaged over events to
obtain 〈!p‖

T〉. No background subtraction was applied, which
allows this study to include the |ηjet| < 0.8 and 0.5 < pTrack

T <
1.0 GeV/c regions not accessible for the study in Sec. III B.
The leading and subleading jets were again required to have
|η| < 1.6.

In Fig. 14, 〈!p‖
T〉 is shown as a function of AJ for two

centrality bins, 30%–100% (left-hand side) and 0%–30%
(right-hand side). Results for PYTHIA + HYDJET are presented
in the top row, while the bottom row shows the results for PbPb
data. Using tracks with |η| < 2.4 and pT > 0.5 GeV/c, one
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missing transverse momentum 〈!p‖

T〉 for
tracks with pT > 0.5 GeV/c, projected
onto the leading jet axis (solid circles).
The 〈!p‖

T〉 values are shown as a func-
tion of dijet asymmetry AJ for 30%–
100% centrality (left-hand side) and
0%–30% centrality (right-hand side).
For the solid circles, vertical bars and
brackets represent the statistical and
systematic uncertainties, respectively.
Colored bands show the contribution
to 〈!p‖

T〉 for five ranges of track pT.
The top and bottom rows show results
for PYTHIA + HYDJET and PbPb data,
respectively. For the individual pT

ranges, the statistical uncertainties are
shown as vertical bars.
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the track momentum composition of the subleading jets is
seen, confirming the calorimeter determination of the dijet
imbalance. The biggest difference between data and simulation
is found for tracks with pT < 4 GeV/c. For PYTHIA, the
momentum in the subleading jet carried by these tracks is
small and their radial distribution is nearly unchanged with
AJ . However, for data, the relative contribution of low-pT
tracks grows with AJ , and an increasing fraction of those
tracks is observed at large distances to the jet axis, extending
out to !R = 0.8 (the largest angular distance to the jet in this
study).

The major systematic uncertainties for the track-jet corre-
lation measurement come from the pT-dependent uncertainty
in the track reconstruction efficiency. The algorithmic track
reconstruction efficiency, which averages 70% over the pT >
0.5 GeV/c and |η| < 2.4 range included in this study, was
determined from an independent PYTHIA + HYDJET sample,
and from simulated tracks embedded in data. Additional un-
certainties are introduced by the underlying event subtraction
procedure. The latter was studied by comparing the track-jet
correlations seen in pure PYTHIA dijet events for generated
particles with those seen in PYTHIA + HYDJET events after
reconstruction and background subtraction. The size of the
background subtraction systematic uncertainty was further
cross checked in data by repeating the procedure for random
ring-like regions in 0%–30% central minimum bias events.
In the end, an overall systematic uncertainty of 20% per bin

was assigned. This uncertainty is included in the combined
statistical and systematic uncertainties shown in Fig. 13.

C. Overall momentum balance of dijet events

The requirements of the background subtraction procedure
limit the track-jet correlation study to tracks with pT >
1.0 GeV/c and !R < 0.8. Complementary information about
the overall momentum balance in the dijet events can be
obtained using the projection of missing pT of reconstructed
charged tracks onto the leading jet axis. For each event, this
projection was calculated as

!p‖
T =

∑

i

−pi
T cos (φi − φLeading Jet), (2)

where the sum is over all tracks with pT > 0.5 GeV/c and
|η| < 2.4. The results were then averaged over events to
obtain 〈!p‖

T〉. No background subtraction was applied, which
allows this study to include the |ηjet| < 0.8 and 0.5 < pTrack

T <
1.0 GeV/c regions not accessible for the study in Sec. III B.
The leading and subleading jets were again required to have
|η| < 1.6.

In Fig. 14, 〈!p‖
T〉 is shown as a function of AJ for two

centrality bins, 30%–100% (left-hand side) and 0%–30%
(right-hand side). Results for PYTHIA + HYDJET are presented
in the top row, while the bottom row shows the results for PbPb
data. Using tracks with |η| < 2.4 and pT > 0.5 GeV/c, one
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T〉 for
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The 〈!p‖

T〉 values are shown as a func-
tion of dijet asymmetry AJ for 30%–
100% centrality (left-hand side) and
0%–30% centrality (right-hand side).
For the solid circles, vertical bars and
brackets represent the statistical and
systematic uncertainties, respectively.
Colored bands show the contribution
to 〈!p‖

T〉 for five ranges of track pT.
The top and bottom rows show results
for PYTHIA + HYDJET and PbPb data,
respectively. For the individual pT

ranges, the statistical uncertainties are
shown as vertical bars.
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simulations and minimizing the biases in the distributions (observed in [36]) for the minimum

ET of the leading jet that we will use, see below. Samples of 10
5
pp events are generated in this

way for each set of parameters. Jet are defined within the Les Houches accords [51] for particles

species and lifetimes.

We will examine the following observables (details of the kinematical cuts will be provided when

the results are presented):

• The inclusive jet spectrum in ET .

• For the hardest and next to hardest jets in the event, with transverse energies ET1 and ET2

respectively, the distribution in azimuthal angle between them and the dijet asymmetry

defined as

AJ =
ET1 − ET2

ET1 + ET2
. (1)

• The missing pT defined as

�
/p
�
T

�
=

�

i

−piT cos(φi − φleading jet), (2)

where the sum runs over all particles in the event with transverse momenta piT and az-

imuthal angle φi.

2.2 Toy model for the background

Background subtraction is needed in order to attempt to define the jet characteristics when

the jet is produced together with an underlying event. In order to study the influence of the

background subtraction method on the different jet observables, we will use a toy model for

generating particles uniformly in pseudorapidity η and azimuthal angle φ along the full detector

acceptance, with the following distribution in transverse momentum pT which smoothly matches

a thermal-like spectrum to a power law:

f(pT ) ∝
�

e
−pT /T , pT ≤ αT,

e
−α

�
αT
pT

�α
, pT > αT.

(3)

Here α = 6 is a power suggested by perturbative calculations and T is a ’temperature’ which

determines the exponential behavior of the soft part of the spectrum. We generate in this way

N particles with a mean value corresponding to a multiplicity dN/dη = 2100 which is allowed

to fluctuate from event to event following a Gaussian distribution with a dispersion of a 4 % of

the mean value. In this way we attempt to mimic the 0 ÷ 10 % centrality class [40–42] in the

experimental analyses [22–25].

In Eq. (3), the temperature is used as a free parameter to control the main characteristics of the

background, the average level of energy deposition (ρ) and its fluctuations (σ) per unit area in

η × φ. These two quantities are computed through the median and the 1-σ half-width through

FastJet with active areas, the kt algorithm with Rbkg = 0.4 and ET > ETmin = 1 GeV for

the particles considered in the definition of jets. The corresponding values can be seen in Fig.

1.

Additionally, this simple toy model allows the introduction of an event-by-event azimuthal modu-

lation in the form of elliptic v2 and triangular v3 flow that we will do in order to check the sensitiv-

ity of the reconstruction to those additional fluctuations that exist in a real event [43–45].

It should be stressed than by no means this model is realistic: the transverse momentum spec-

trum does not describe experimental data [11,12], the
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sees that indeed the momentum balance of the events, shown
as solid circles, is recovered within uncertainties, for both
centrality ranges and even for events with large observed dijet
asymmetry, in both data and simulation. This shows that the
dijet momentum imbalance is not related to undetected activity
in the event due to instrumental (e.g., gaps or inefficiencies in
the calorimeter) or physics (e.g., neutrino production) effects.

The figure also shows the contributions to 〈"p‖
T〉 for five

transverse momentum ranges from 0.5–1 GeV/c to pT >
8 GeV/c. The vertical bars for each range denote statistical
uncertainties. For data and simulation, a large negative
contribution to 〈"p‖

T〉 (i.e., in the direction of the leading jet)
by the pT > 8 GeV/c range is balanced by the combined
contributions from the 0.5–8 GeV/c regions. Looking at the
pT < 8 GeV/c region in detail, important differences between
data and simulation emerge. For PYTHIA + HYDJET both
centrality ranges show a large balancing contribution from the
intermediate pT region of 4–8 GeV/c, while the contribution
from the two regions spanning 0.5–2 GeV/c is very small. In
peripheral PbPb data, the contribution of 0.5–2 GeV/c tracks
relative to that from 4–8 GeV/c tracks is somewhat enhanced
compared to the simulation. In central PbPb events, the relative
contribution of low and intermediate-pT tracks is actually
the opposite of that seen in PYTHIA + HYDJET. In data, the
4–8 GeV/c region makes almost no contribution to the overall
momentum balance, while a large fraction of the negative
imbalance from high pT is recovered in low-momentum tracks.

The dominant systematic uncertainty for the pT balance
measurement comes from the pT-dependent uncertainty in
the track reconstruction efficiency and fake rate described in
Sec. III B. A 20% uncertainty was assigned to the final result,
stemming from the residual difference between the PYTHIA
generator level and the reconstructed PYTHIA + HYDJET tracks
at high pT. This is combined with an absolute 3 GeV/c
uncertainty that comes from the imperfect cancellation of the
background tracks. The background effect was cross checked
in data from a random cone study in 0%–30% central events
similar to the study described in Sec. III B. The overall
systematic uncertainty is shown as brackets in Figs. 14 and 15.

Further insight into the radial dependence of the momentum
balance can be gained by studying 〈"p‖

T〉 separately for tracks
inside cones of size !R = 0.8 around the leading and
subleading jet axes, and for tracks outside of these cones.
The results of this study for central events are shown in Fig. 15
for the in-cone balance and out-of-cone balance for MC and
data. As the underlying PbPb event in both data and MC is
not φ symmetric on an event-by-event basis, the back-to-back
requirement was tightened to !φ12 > 5π/6 for this study.

One observes that for both data and MC an in-cone
imbalance of 〈"p‖

T〉 ≈ −20 GeV/c is found for the AJ > 0.33
selection. In both cases this is balanced by a corresponding
out-of-cone imbalance of 〈"p‖

T〉 ≈ 20 GeV/c. However, in
the PbPb data the out-of-cone contribution is carried almost
entirely by tracks with 0.5 < pT < 4 GeV/c, whereas in MC
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FIG. 15. (Color online) Average
missing transverse momentum 〈"p‖

T〉 for
tracks with pT > 0.5 GeV/c, projected
onto the leading jet axis (solid circles).
The 〈"p‖

T〉 values are shown as a function
of dijet asymmetry AJ for 0%–30%
centrality, inside (!R < 0.8) one of the
leading or subleading jet cones (left-
hand side) and outside (!R > 0.8)
the leading and subleading jet cones
(right-hand side). For the solid circles,
vertical bars and brackets represent the
statistical and systematic uncertainties,
respectively. For the individual pT

ranges, the statistical uncertainties are
shown as vertical bars.
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the track momentum composition of the subleading jets is
seen, confirming the calorimeter determination of the dijet
imbalance. The biggest difference between data and simulation
is found for tracks with pT < 4 GeV/c. For PYTHIA, the
momentum in the subleading jet carried by these tracks is
small and their radial distribution is nearly unchanged with
AJ . However, for data, the relative contribution of low-pT
tracks grows with AJ , and an increasing fraction of those
tracks is observed at large distances to the jet axis, extending
out to !R = 0.8 (the largest angular distance to the jet in this
study).

The major systematic uncertainties for the track-jet corre-
lation measurement come from the pT-dependent uncertainty
in the track reconstruction efficiency. The algorithmic track
reconstruction efficiency, which averages 70% over the pT >
0.5 GeV/c and |η| < 2.4 range included in this study, was
determined from an independent PYTHIA + HYDJET sample,
and from simulated tracks embedded in data. Additional un-
certainties are introduced by the underlying event subtraction
procedure. The latter was studied by comparing the track-jet
correlations seen in pure PYTHIA dijet events for generated
particles with those seen in PYTHIA + HYDJET events after
reconstruction and background subtraction. The size of the
background subtraction systematic uncertainty was further
cross checked in data by repeating the procedure for random
ring-like regions in 0%–30% central minimum bias events.
In the end, an overall systematic uncertainty of 20% per bin

was assigned. This uncertainty is included in the combined
statistical and systematic uncertainties shown in Fig. 13.

C. Overall momentum balance of dijet events

The requirements of the background subtraction procedure
limit the track-jet correlation study to tracks with pT >
1.0 GeV/c and !R < 0.8. Complementary information about
the overall momentum balance in the dijet events can be
obtained using the projection of missing pT of reconstructed
charged tracks onto the leading jet axis. For each event, this
projection was calculated as

!p‖
T =

∑

i

−pi
T cos (φi − φLeading Jet), (2)

where the sum is over all tracks with pT > 0.5 GeV/c and
|η| < 2.4. The results were then averaged over events to
obtain 〈!p‖

T〉. No background subtraction was applied, which
allows this study to include the |ηjet| < 0.8 and 0.5 < pTrack

T <
1.0 GeV/c regions not accessible for the study in Sec. III B.
The leading and subleading jets were again required to have
|η| < 1.6.

In Fig. 14, 〈!p‖
T〉 is shown as a function of AJ for two

centrality bins, 30%–100% (left-hand side) and 0%–30%
(right-hand side). Results for PYTHIA + HYDJET are presented
in the top row, while the bottom row shows the results for PbPb
data. Using tracks with |η| < 2.4 and pT > 0.5 GeV/c, one
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FIG. 14. (Color online) Average
missing transverse momentum 〈!p‖

T〉 for
tracks with pT > 0.5 GeV/c, projected
onto the leading jet axis (solid circles).
The 〈!p‖

T〉 values are shown as a func-
tion of dijet asymmetry AJ for 30%–
100% centrality (left-hand side) and
0%–30% centrality (right-hand side).
For the solid circles, vertical bars and
brackets represent the statistical and
systematic uncertainties, respectively.
Colored bands show the contribution
to 〈!p‖

T〉 for five ranges of track pT.
The top and bottom rows show results
for PYTHIA + HYDJET and PbPb data,
respectively. For the individual pT

ranges, the statistical uncertainties are
shown as vertical bars.
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the track momentum composition of the subleading jets is
seen, confirming the calorimeter determination of the dijet
imbalance. The biggest difference between data and simulation
is found for tracks with pT < 4 GeV/c. For PYTHIA, the
momentum in the subleading jet carried by these tracks is
small and their radial distribution is nearly unchanged with
AJ . However, for data, the relative contribution of low-pT
tracks grows with AJ , and an increasing fraction of those
tracks is observed at large distances to the jet axis, extending
out to !R = 0.8 (the largest angular distance to the jet in this
study).

The major systematic uncertainties for the track-jet corre-
lation measurement come from the pT-dependent uncertainty
in the track reconstruction efficiency. The algorithmic track
reconstruction efficiency, which averages 70% over the pT >
0.5 GeV/c and |η| < 2.4 range included in this study, was
determined from an independent PYTHIA + HYDJET sample,
and from simulated tracks embedded in data. Additional un-
certainties are introduced by the underlying event subtraction
procedure. The latter was studied by comparing the track-jet
correlations seen in pure PYTHIA dijet events for generated
particles with those seen in PYTHIA + HYDJET events after
reconstruction and background subtraction. The size of the
background subtraction systematic uncertainty was further
cross checked in data by repeating the procedure for random
ring-like regions in 0%–30% central minimum bias events.
In the end, an overall systematic uncertainty of 20% per bin

was assigned. This uncertainty is included in the combined
statistical and systematic uncertainties shown in Fig. 13.

C. Overall momentum balance of dijet events

The requirements of the background subtraction procedure
limit the track-jet correlation study to tracks with pT >
1.0 GeV/c and !R < 0.8. Complementary information about
the overall momentum balance in the dijet events can be
obtained using the projection of missing pT of reconstructed
charged tracks onto the leading jet axis. For each event, this
projection was calculated as

!p‖
T =

∑

i

−pi
T cos (φi − φLeading Jet), (2)

where the sum is over all tracks with pT > 0.5 GeV/c and
|η| < 2.4. The results were then averaged over events to
obtain 〈!p‖

T〉. No background subtraction was applied, which
allows this study to include the |ηjet| < 0.8 and 0.5 < pTrack

T <
1.0 GeV/c regions not accessible for the study in Sec. III B.
The leading and subleading jets were again required to have
|η| < 1.6.

In Fig. 14, 〈!p‖
T〉 is shown as a function of AJ for two

centrality bins, 30%–100% (left-hand side) and 0%–30%
(right-hand side). Results for PYTHIA + HYDJET are presented
in the top row, while the bottom row shows the results for PbPb
data. Using tracks with |η| < 2.4 and pT > 0.5 GeV/c, one
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FIG. 14. (Color online) Average
missing transverse momentum 〈!p‖

T〉 for
tracks with pT > 0.5 GeV/c, projected
onto the leading jet axis (solid circles).
The 〈!p‖

T〉 values are shown as a func-
tion of dijet asymmetry AJ for 30%–
100% centrality (left-hand side) and
0%–30% centrality (right-hand side).
For the solid circles, vertical bars and
brackets represent the statistical and
systematic uncertainties, respectively.
Colored bands show the contribution
to 〈!p‖

T〉 for five ranges of track pT.
The top and bottom rows show results
for PYTHIA + HYDJET and PbPb data,
respectively. For the individual pT

ranges, the statistical uncertainties are
shown as vertical bars.
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ª Only Q-PYTHIA simulation (without background) 
ª qhat = 4 GeV2 fm-1 

29 Jet Reconstruction in HIC 

simulations and minimizing the biases in the distributions (observed in [36]) for the minimum

ET of the leading jet that we will use, see below. Samples of 10
5
pp events are generated in this

way for each set of parameters. Jet are defined within the Les Houches accords [51] for particles

species and lifetimes.

We will examine the following observables (details of the kinematical cuts will be provided when

the results are presented):

• The inclusive jet spectrum in ET .

• For the hardest and next to hardest jets in the event, with transverse energies ET1 and ET2

respectively, the distribution in azimuthal angle between them and the dijet asymmetry

defined as

AJ =
ET1 − ET2

ET1 + ET2
. (1)

• The missing pT defined as

�
/p
�
T

�
=

�

i

−piT cos(φi − φleading jet), (2)

where the sum runs over all particles in the event with transverse momenta piT and az-

imuthal angle φi.

2.2 Toy model for the background

Background subtraction is needed in order to attempt to define the jet characteristics when

the jet is produced together with an underlying event. In order to study the influence of the

background subtraction method on the different jet observables, we will use a toy model for

generating particles uniformly in pseudorapidity η and azimuthal angle φ along the full detector

acceptance, with the following distribution in transverse momentum pT which smoothly matches

a thermal-like spectrum to a power law:

f(pT ) ∝
�

e
−pT /T , pT ≤ αT,

e
−α

�
αT
pT

�α
, pT > αT.

(3)

Here α = 6 is a power suggested by perturbative calculations and T is a ’temperature’ which

determines the exponential behavior of the soft part of the spectrum. We generate in this way

N particles with a mean value corresponding to a multiplicity dN/dη = 2100 which is allowed

to fluctuate from event to event following a Gaussian distribution with a dispersion of a 4 % of

the mean value. In this way we attempt to mimic the 0 ÷ 10 % centrality class [40–42] in the

experimental analyses [22–25].

In Eq. (3), the temperature is used as a free parameter to control the main characteristics of the

background, the average level of energy deposition (ρ) and its fluctuations (σ) per unit area in

η × φ. These two quantities are computed through the median and the 1-σ half-width through

FastJet with active areas, the kt algorithm with Rbkg = 0.4 and ET > ETmin = 1 GeV for

the particles considered in the definition of jets. The corresponding values can be seen in Fig.

1.

Additionally, this simple toy model allows the introduction of an event-by-event azimuthal modu-

lation in the form of elliptic v2 and triangular v3 flow that we will do in order to check the sensitiv-

ity of the reconstruction to those additional fluctuations that exist in a real event [43–45].

It should be stressed than by no means this model is realistic: the transverse momentum spec-

trum does not describe experimental data [11,12], the
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sees that indeed the momentum balance of the events, shown
as solid circles, is recovered within uncertainties, for both
centrality ranges and even for events with large observed dijet
asymmetry, in both data and simulation. This shows that the
dijet momentum imbalance is not related to undetected activity
in the event due to instrumental (e.g., gaps or inefficiencies in
the calorimeter) or physics (e.g., neutrino production) effects.

The figure also shows the contributions to 〈"p‖
T〉 for five

transverse momentum ranges from 0.5–1 GeV/c to pT >
8 GeV/c. The vertical bars for each range denote statistical
uncertainties. For data and simulation, a large negative
contribution to 〈"p‖

T〉 (i.e., in the direction of the leading jet)
by the pT > 8 GeV/c range is balanced by the combined
contributions from the 0.5–8 GeV/c regions. Looking at the
pT < 8 GeV/c region in detail, important differences between
data and simulation emerge. For PYTHIA + HYDJET both
centrality ranges show a large balancing contribution from the
intermediate pT region of 4–8 GeV/c, while the contribution
from the two regions spanning 0.5–2 GeV/c is very small. In
peripheral PbPb data, the contribution of 0.5–2 GeV/c tracks
relative to that from 4–8 GeV/c tracks is somewhat enhanced
compared to the simulation. In central PbPb events, the relative
contribution of low and intermediate-pT tracks is actually
the opposite of that seen in PYTHIA + HYDJET. In data, the
4–8 GeV/c region makes almost no contribution to the overall
momentum balance, while a large fraction of the negative
imbalance from high pT is recovered in low-momentum tracks.

The dominant systematic uncertainty for the pT balance
measurement comes from the pT-dependent uncertainty in
the track reconstruction efficiency and fake rate described in
Sec. III B. A 20% uncertainty was assigned to the final result,
stemming from the residual difference between the PYTHIA
generator level and the reconstructed PYTHIA + HYDJET tracks
at high pT. This is combined with an absolute 3 GeV/c
uncertainty that comes from the imperfect cancellation of the
background tracks. The background effect was cross checked
in data from a random cone study in 0%–30% central events
similar to the study described in Sec. III B. The overall
systematic uncertainty is shown as brackets in Figs. 14 and 15.

Further insight into the radial dependence of the momentum
balance can be gained by studying 〈"p‖

T〉 separately for tracks
inside cones of size !R = 0.8 around the leading and
subleading jet axes, and for tracks outside of these cones.
The results of this study for central events are shown in Fig. 15
for the in-cone balance and out-of-cone balance for MC and
data. As the underlying PbPb event in both data and MC is
not φ symmetric on an event-by-event basis, the back-to-back
requirement was tightened to !φ12 > 5π/6 for this study.

One observes that for both data and MC an in-cone
imbalance of 〈"p‖

T〉 ≈ −20 GeV/c is found for the AJ > 0.33
selection. In both cases this is balanced by a corresponding
out-of-cone imbalance of 〈"p‖

T〉 ≈ 20 GeV/c. However, in
the PbPb data the out-of-cone contribution is carried almost
entirely by tracks with 0.5 < pT < 4 GeV/c, whereas in MC
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FIG. 15. (Color online) Average
missing transverse momentum 〈"p‖

T〉 for
tracks with pT > 0.5 GeV/c, projected
onto the leading jet axis (solid circles).
The 〈"p‖

T〉 values are shown as a function
of dijet asymmetry AJ for 0%–30%
centrality, inside (!R < 0.8) one of the
leading or subleading jet cones (left-
hand side) and outside (!R > 0.8)
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vertical bars and brackets represent the
statistical and systematic uncertainties,
respectively. For the individual pT

ranges, the statistical uncertainties are
shown as vertical bars.
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ª Qualitatively, goes in the same direction than data! 
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the track momentum composition of the subleading jets is
seen, confirming the calorimeter determination of the dijet
imbalance. The biggest difference between data and simulation
is found for tracks with pT < 4 GeV/c. For PYTHIA, the
momentum in the subleading jet carried by these tracks is
small and their radial distribution is nearly unchanged with
AJ . However, for data, the relative contribution of low-pT
tracks grows with AJ , and an increasing fraction of those
tracks is observed at large distances to the jet axis, extending
out to !R = 0.8 (the largest angular distance to the jet in this
study).

The major systematic uncertainties for the track-jet corre-
lation measurement come from the pT-dependent uncertainty
in the track reconstruction efficiency. The algorithmic track
reconstruction efficiency, which averages 70% over the pT >
0.5 GeV/c and |η| < 2.4 range included in this study, was
determined from an independent PYTHIA + HYDJET sample,
and from simulated tracks embedded in data. Additional un-
certainties are introduced by the underlying event subtraction
procedure. The latter was studied by comparing the track-jet
correlations seen in pure PYTHIA dijet events for generated
particles with those seen in PYTHIA + HYDJET events after
reconstruction and background subtraction. The size of the
background subtraction systematic uncertainty was further
cross checked in data by repeating the procedure for random
ring-like regions in 0%–30% central minimum bias events.
In the end, an overall systematic uncertainty of 20% per bin

was assigned. This uncertainty is included in the combined
statistical and systematic uncertainties shown in Fig. 13.

C. Overall momentum balance of dijet events

The requirements of the background subtraction procedure
limit the track-jet correlation study to tracks with pT >
1.0 GeV/c and !R < 0.8. Complementary information about
the overall momentum balance in the dijet events can be
obtained using the projection of missing pT of reconstructed
charged tracks onto the leading jet axis. For each event, this
projection was calculated as

!p‖
T =

∑

i

−pi
T cos (φi − φLeading Jet), (2)

where the sum is over all tracks with pT > 0.5 GeV/c and
|η| < 2.4. The results were then averaged over events to
obtain 〈!p‖

T〉. No background subtraction was applied, which
allows this study to include the |ηjet| < 0.8 and 0.5 < pTrack

T <
1.0 GeV/c regions not accessible for the study in Sec. III B.
The leading and subleading jets were again required to have
|η| < 1.6.

In Fig. 14, 〈!p‖
T〉 is shown as a function of AJ for two

centrality bins, 30%–100% (left-hand side) and 0%–30%
(right-hand side). Results for PYTHIA + HYDJET are presented
in the top row, while the bottom row shows the results for PbPb
data. Using tracks with |η| < 2.4 and pT > 0.5 GeV/c, one
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FIG. 14. (Color online) Average
missing transverse momentum 〈!p‖

T〉 for
tracks with pT > 0.5 GeV/c, projected
onto the leading jet axis (solid circles).
The 〈!p‖

T〉 values are shown as a func-
tion of dijet asymmetry AJ for 30%–
100% centrality (left-hand side) and
0%–30% centrality (right-hand side).
For the solid circles, vertical bars and
brackets represent the statistical and
systematic uncertainties, respectively.
Colored bands show the contribution
to 〈!p‖

T〉 for five ranges of track pT.
The top and bottom rows show results
for PYTHIA + HYDJET and PbPb data,
respectively. For the individual pT

ranges, the statistical uncertainties are
shown as vertical bars.

024906-14

S. CHATRCHYAN et al. PHYSICAL REVIEW C 84, 024906 (2011)

the track momentum composition of the subleading jets is
seen, confirming the calorimeter determination of the dijet
imbalance. The biggest difference between data and simulation
is found for tracks with pT < 4 GeV/c. For PYTHIA, the
momentum in the subleading jet carried by these tracks is
small and their radial distribution is nearly unchanged with
AJ . However, for data, the relative contribution of low-pT
tracks grows with AJ , and an increasing fraction of those
tracks is observed at large distances to the jet axis, extending
out to !R = 0.8 (the largest angular distance to the jet in this
study).

The major systematic uncertainties for the track-jet corre-
lation measurement come from the pT-dependent uncertainty
in the track reconstruction efficiency. The algorithmic track
reconstruction efficiency, which averages 70% over the pT >
0.5 GeV/c and |η| < 2.4 range included in this study, was
determined from an independent PYTHIA + HYDJET sample,
and from simulated tracks embedded in data. Additional un-
certainties are introduced by the underlying event subtraction
procedure. The latter was studied by comparing the track-jet
correlations seen in pure PYTHIA dijet events for generated
particles with those seen in PYTHIA + HYDJET events after
reconstruction and background subtraction. The size of the
background subtraction systematic uncertainty was further
cross checked in data by repeating the procedure for random
ring-like regions in 0%–30% central minimum bias events.
In the end, an overall systematic uncertainty of 20% per bin

was assigned. This uncertainty is included in the combined
statistical and systematic uncertainties shown in Fig. 13.

C. Overall momentum balance of dijet events

The requirements of the background subtraction procedure
limit the track-jet correlation study to tracks with pT >
1.0 GeV/c and !R < 0.8. Complementary information about
the overall momentum balance in the dijet events can be
obtained using the projection of missing pT of reconstructed
charged tracks onto the leading jet axis. For each event, this
projection was calculated as

!p‖
T =

∑

i

−pi
T cos (φi − φLeading Jet), (2)

where the sum is over all tracks with pT > 0.5 GeV/c and
|η| < 2.4. The results were then averaged over events to
obtain 〈!p‖

T〉. No background subtraction was applied, which
allows this study to include the |ηjet| < 0.8 and 0.5 < pTrack

T <
1.0 GeV/c regions not accessible for the study in Sec. III B.
The leading and subleading jets were again required to have
|η| < 1.6.

In Fig. 14, 〈!p‖
T〉 is shown as a function of AJ for two

centrality bins, 30%–100% (left-hand side) and 0%–30%
(right-hand side). Results for PYTHIA + HYDJET are presented
in the top row, while the bottom row shows the results for PbPb
data. Using tracks with |η| < 2.4 and pT > 0.5 GeV/c, one
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T〉 for
tracks with pT > 0.5 GeV/c, projected
onto the leading jet axis (solid circles).
The 〈!p‖

T〉 values are shown as a func-
tion of dijet asymmetry AJ for 30%–
100% centrality (left-hand side) and
0%–30% centrality (right-hand side).
For the solid circles, vertical bars and
brackets represent the statistical and
systematic uncertainties, respectively.
Colored bands show the contribution
to 〈!p‖

T〉 for five ranges of track pT.
The top and bottom rows show results
for PYTHIA + HYDJET and PbPb data,
respectively. For the individual pT

ranges, the statistical uncertainties are
shown as vertical bars.
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simulations and minimizing the biases in the distributions (observed in [36]) for the minimum

ET of the leading jet that we will use, see below. Samples of 10
5
pp events are generated in this

way for each set of parameters. Jet are defined within the Les Houches accords [51] for particles

species and lifetimes.

We will examine the following observables (details of the kinematical cuts will be provided when

the results are presented):

• The inclusive jet spectrum in ET .

• For the hardest and next to hardest jets in the event, with transverse energies ET1 and ET2

respectively, the distribution in azimuthal angle between them and the dijet asymmetry

defined as

AJ =
ET1 − ET2

ET1 + ET2
. (1)

• The missing pT defined as

�
/p
�
T

�
=

�

i

−piT cos(φi − φleading jet), (2)

where the sum runs over all particles in the event with transverse momenta piT and az-

imuthal angle φi.

2.2 Toy model for the background

Background subtraction is needed in order to attempt to define the jet characteristics when

the jet is produced together with an underlying event. In order to study the influence of the

background subtraction method on the different jet observables, we will use a toy model for

generating particles uniformly in pseudorapidity η and azimuthal angle φ along the full detector

acceptance, with the following distribution in transverse momentum pT which smoothly matches

a thermal-like spectrum to a power law:

f(pT ) ∝
�

e
−pT /T , pT ≤ αT,

e
−α

�
αT
pT

�α
, pT > αT.

(3)

Here α = 6 is a power suggested by perturbative calculations and T is a ’temperature’ which

determines the exponential behavior of the soft part of the spectrum. We generate in this way

N particles with a mean value corresponding to a multiplicity dN/dη = 2100 which is allowed

to fluctuate from event to event following a Gaussian distribution with a dispersion of a 4 % of

the mean value. In this way we attempt to mimic the 0 ÷ 10 % centrality class [40–42] in the

experimental analyses [22–25].

In Eq. (3), the temperature is used as a free parameter to control the main characteristics of the

background, the average level of energy deposition (ρ) and its fluctuations (σ) per unit area in

η × φ. These two quantities are computed through the median and the 1-σ half-width through

FastJet with active areas, the kt algorithm with Rbkg = 0.4 and ET > ETmin = 1 GeV for

the particles considered in the definition of jets. The corresponding values can be seen in Fig.

1.

Additionally, this simple toy model allows the introduction of an event-by-event azimuthal modu-

lation in the form of elliptic v2 and triangular v3 flow that we will do in order to check the sensitiv-

ity of the reconstruction to those additional fluctuations that exist in a real event [43–45].

It should be stressed than by no means this model is realistic: the transverse momentum spec-

trum does not describe experimental data [11,12], the
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sees that indeed the momentum balance of the events, shown
as solid circles, is recovered within uncertainties, for both
centrality ranges and even for events with large observed dijet
asymmetry, in both data and simulation. This shows that the
dijet momentum imbalance is not related to undetected activity
in the event due to instrumental (e.g., gaps or inefficiencies in
the calorimeter) or physics (e.g., neutrino production) effects.

The figure also shows the contributions to 〈"p‖
T〉 for five

transverse momentum ranges from 0.5–1 GeV/c to pT >
8 GeV/c. The vertical bars for each range denote statistical
uncertainties. For data and simulation, a large negative
contribution to 〈"p‖

T〉 (i.e., in the direction of the leading jet)
by the pT > 8 GeV/c range is balanced by the combined
contributions from the 0.5–8 GeV/c regions. Looking at the
pT < 8 GeV/c region in detail, important differences between
data and simulation emerge. For PYTHIA + HYDJET both
centrality ranges show a large balancing contribution from the
intermediate pT region of 4–8 GeV/c, while the contribution
from the two regions spanning 0.5–2 GeV/c is very small. In
peripheral PbPb data, the contribution of 0.5–2 GeV/c tracks
relative to that from 4–8 GeV/c tracks is somewhat enhanced
compared to the simulation. In central PbPb events, the relative
contribution of low and intermediate-pT tracks is actually
the opposite of that seen in PYTHIA + HYDJET. In data, the
4–8 GeV/c region makes almost no contribution to the overall
momentum balance, while a large fraction of the negative
imbalance from high pT is recovered in low-momentum tracks.

The dominant systematic uncertainty for the pT balance
measurement comes from the pT-dependent uncertainty in
the track reconstruction efficiency and fake rate described in
Sec. III B. A 20% uncertainty was assigned to the final result,
stemming from the residual difference between the PYTHIA
generator level and the reconstructed PYTHIA + HYDJET tracks
at high pT. This is combined with an absolute 3 GeV/c
uncertainty that comes from the imperfect cancellation of the
background tracks. The background effect was cross checked
in data from a random cone study in 0%–30% central events
similar to the study described in Sec. III B. The overall
systematic uncertainty is shown as brackets in Figs. 14 and 15.

Further insight into the radial dependence of the momentum
balance can be gained by studying 〈"p‖

T〉 separately for tracks
inside cones of size !R = 0.8 around the leading and
subleading jet axes, and for tracks outside of these cones.
The results of this study for central events are shown in Fig. 15
for the in-cone balance and out-of-cone balance for MC and
data. As the underlying PbPb event in both data and MC is
not φ symmetric on an event-by-event basis, the back-to-back
requirement was tightened to !φ12 > 5π/6 for this study.

One observes that for both data and MC an in-cone
imbalance of 〈"p‖

T〉 ≈ −20 GeV/c is found for the AJ > 0.33
selection. In both cases this is balanced by a corresponding
out-of-cone imbalance of 〈"p‖

T〉 ≈ 20 GeV/c. However, in
the PbPb data the out-of-cone contribution is carried almost
entirely by tracks with 0.5 < pT < 4 GeV/c, whereas in MC
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FIG. 15. (Color online) Average
missing transverse momentum 〈"p‖

T〉 for
tracks with pT > 0.5 GeV/c, projected
onto the leading jet axis (solid circles).
The 〈"p‖

T〉 values are shown as a function
of dijet asymmetry AJ for 0%–30%
centrality, inside (!R < 0.8) one of the
leading or subleading jet cones (left-
hand side) and outside (!R > 0.8)
the leading and subleading jet cones
(right-hand side). For the solid circles,
vertical bars and brackets represent the
statistical and systematic uncertainties,
respectively. For the individual pT

ranges, the statistical uncertainties are
shown as vertical bars.

024906-15

JA

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

> 
(G

eV
)

T
<p

-40

-20

0

20

40

All RAll R

JA

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

> 
(G

eV
)

T
<p

-60

-40

-20

0

20

40

60

R <= 0.8

-1 fm2Q-PYTHIA: qhat = 4 GeV

0.5 - 1.0 GeV

1.0 - 2.0 GeV

2.0 - 4.0 GeV

4.0 - 8.0 GeV

> 8 GeV

R <= 0.8

JA

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

> 
(G

eV
)

T
<p

-40

-30

-20

-10

0

10

20

30

40

R > 0.8R > 0.8

JA

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

> 
(G

eV
)

T
<p

-40

-20

0

20

40

All RAll R

JA

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

> 
(G

eV
)

T
<p

-60

-40

-20

0

20

40

60

R <= 0.8

-1 fm2Q-PYTHIA: qhat = 4 GeV

0.5 - 1.0 GeV

1.0 - 2.0 GeV

2.0 - 4.0 GeV

4.0 - 8.0 GeV

> 8 GeV

R <= 0.8

JA

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

> 
(G

eV
)

T
<p

-40

-30

-20

-10

0

10

20

30

40

R > 0.8R > 0.8

JA

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

> 
(G

eV
)

T
<p

-40

-20

0

20

40

All RAll R

JA

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

> 
(G

eV
)

T
<p

-60

-40

-20

0

20

40

60

R <= 0.8

-1 fm2Q-PYTHIA: qhat = 4 GeV

0.5 - 1.0 GeV

1.0 - 2.0 GeV

2.0 - 4.0 GeV

4.0 - 8.0 GeV

> 8 GeV

R <= 0.8

JA

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

> 
(G

eV
)

T
<p

-40

-30

-20

-10

0

10

20

30

40

R > 0.8R > 0.8



ª Higher difference for larger values of AJ: 
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33 Jet Reconstruction in HIC 

ª In data (PbPb), 
these tracks 
disappear, and also 
in Q-PYTHIA 
ª Same events than 

before, but the 
third jet is now 
quenched (Et*< Et) 
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mechanisms? 
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ª Higher difference for larger values of AJ: 
ª Already in pp there are events with AJ > 0.3: 

ª Presence of tracks with pT>8 GeV outside cone 
of R = 0.8 in simulation and PYTHIA 

Jet Reconstruction in HIC 

ª In data (PbPb), 
these tracks 
disappear, and also 
in Q-PYTHIA 
ª Same events than 

before, but the 
third jet is now 
quenched (Et*< Et) 

ª No compelling 
need of large 
angle emission 
mechanisms? 



ª Background subtraction techniques: 
ª FastJet is sensible to background fluctuations (energy 

reconstruction) 
ª Not affected by the particle structure of background (comparison with 

PSM gives similar results) 

37 Jet Reconstruction in HIC 



ª Background subtraction techniques: 
ª FastJet is sensible to background fluctuations (energy 

reconstruction) 
ª Not affected by the particle structure of background (comparison with 

PSM gives similar results) 

ª CMS-like seems to present some deviations in the angular 
reconstruction; has also a dependency with Etjets 

ª Can be related to the intrinsic structure of the background 

ª To characterize a background, may be needed more than an effective ρ, 
and σ 
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ª Background subtraction techniques: 
ª FastJet is sensible to background fluctuations (energy 

reconstruction) 
ª Not affected by the particle structure of background (comparison with 

PSM gives similar results) 

ª CMS-like seems to present some deviations in the angular 
reconstruction; has also a dependency with Etjets 

ª Can be related to the intrinsic structure of the background 

ª To characterize a background, may be needed more than an effective ρ, 
and σ 

ª Quenching with Q-PYTHIA model: 
ª Goes in the same direction than CMS data for the asymmetry 

ª Angular deviation still inside limits (for FastJet subtraction) 

ª Goes in the right direction of the presence of the higher amount of 
soft particles at large angle (missing pT) 

39 Jet Reconstruction in HIC 



40 Jet Reconstruction in HIC 



41 Jet Reconstruction in HIC 



ª Comparison of the jet spectrum subtracted: 
ª Subtraction method: FastJet (jet areas) 

42 Jet Reconstruction in HIC 

Close results: 
Our toy model is a good approximation for jet studies 

(pythia spectrum recovered for Etjets > 40 GeV for this background parameters) 
Background subtraction method based on jet areas seems to be able to handle 

quite well changes is the background structure 
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<ρ> =  115 GeV 
<σ>= 7.78 GeV 
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