Background Subtraction and Jet Quenching on Jet Reconstruction

Liliana Apolinário

Universidade de Santiago de Compostela CENTRA-Instituto Superior Técnico

Néstor Armesto, Leticia Cunqueiro

Preliminary: work in progress...

Hard Probes May 27th - June 1st, 2012 Cagliari, Italy

- → Ultra-relativistic heavy-ion collisions:
 - → Hard probes to characterize the medium produced:
 - → Spectra of high-momentum particles
 - **→** Jets:

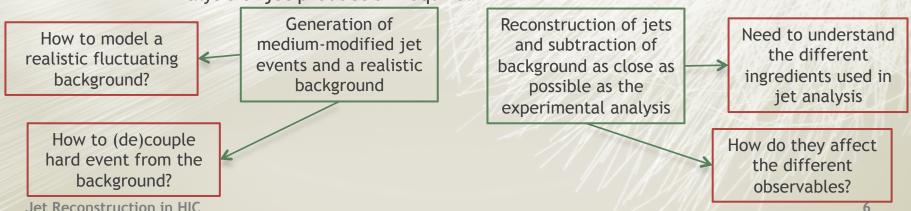
- → Ultra-relativistic heavy-ion collisions:
 - → Hard probes to characterize the medium produced:
 - ◆ Spectra of high-momentum particles
 - → Jets: Main Results (ATLAS:1011.6182, CMS:1102.1957, 1202.5022, 1205.0206)
 - → High jet momentum imbalance in dijet events (asymmetry increases with centrality)
 - ★ Azimuthal distribution has minor changes with respect to pp
 - ★ Excess of soft particles at large angles with respect to the subleading jet and increasing asymmetry (average missing transverse momentum)

- → Ultra-relativistic heavy-ion collisions:
 - → Hard probes to characterize the medium produced:
 - ◆ Spectra of high-momentum particles
 - → Jets: Main Results (ATLAS:1011.6182, CMS:1102.1957, 1202.5022, 1205.0206)
 - High jet momentum imbalance in dijet events (asymmetry increases with centrality)
 - ★ Azimuthal distribution has minor changes with respect to pp
 - ★ Excess of soft particles at large angles with respect to the subleading jet and increasing asymmetry (average missing transverse momentum)
 - → Analysis of jet production require:

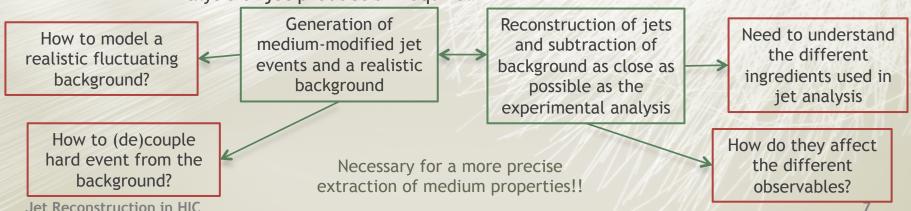
Generation of medium-modified jet events and a realistic background

Reconstruction of jets and subtraction of background as close as possible as the experimental analysis

- → Ultra-relativistic heavy-ion collisions:
 - → Hard probes to characterize the medium produced:
 - ◆ Spectra of high-momentum particles
 - → Jets: Main Results (ATLAS:1011.6182, CMS:1102.1957, 1202.5022, 1205.0206)
 - High jet momentum imbalance in dijet events (asymmetry increases with centrality)
 - → Azimuthal distribution has minor changes with respect to pp
 - ★Excess of soft particles at large angles with respect to the subleading jet and increasing asymmetry (average missing transverse momentum)
 - → Analysis of jet production require:


How to model a realistic fluctuating background?

Generation of medium-modified jet events and a realistic background


Reconstruction of jets and subtraction of background as close as possible as the experimental analysis

How to (de)couple hard event from the background?

- → Ultra-relativistic heavy-ion collisions:
 - → Hard probes to characterize the medium produced:
 - ◆ Spectra of high-momentum particles
 - → Jets: Main Results (ATLAS:1011.6182, CMS:1102.1957, 1202.5022, 1205.0206)
 - High jet momentum imbalance in dijet events (asymmetry increases with centrality)
 - ★ Azimuthal distribution has minor changes with respect to pp
 - ★Excess of soft particles at large angles with respect to the subleading jet and increasing asymmetry (average missing transverse momentum)
 - → Analysis of jet production require:

- → Ultra-relativistic heavy-ion collisions:
 - → Hard probes to characterize the medium produced:
 - ◆ Spectra of high-momentum particles
 - → Jets: Main Results (ATLAS:1011.6182, CMS:1102.1957, 1202.5022, 1205.0206)
 - High jet momentum imbalance in dijet events (asymmetry increases with centrality)
 - ★ Azimuthal distribution has minor changes with respect to pp
 - ★Excess of soft particles at large angles with respect to the subleading jet and increasing asymmetry (average missing transverse momentum)
 - → Analysis of jet production require:

- → Main Goal:
 - → Investigate the effect of background fluctuations and subtraction on several jet observables
 - → Assess the degree of quenching of the data

→ Main Goal:

- → Investigate the effect of background fluctuations and subtraction on several jet observables
- +Assess the degree of quenching of the data
- **+**Our approach:
 - → Q-PYTHIA jets embedded in a simulated background:
 - Toy model based on a thermal spectrum $f(p_T) = \begin{cases} \mathrm{e}^{-p_T/T} & p_T \leq \alpha T \\ \mathrm{e}^{-\alpha} \left(\frac{\alpha T}{p_T}\right)^{\alpha} & p_T > \alpha T \end{cases}$
 - lacktriangle Background particle distribution in Φ modeled by $\frac{dN}{d\phi} \propto 1 + \sum_n 2v_n \cos(n\phi)$

- → Main Goal:
 - → Investigate the effect of background fluctuations and subtraction on several jet observables
 - +Assess the degree of quenching of the data
- **♦**Our approach:

Q-PYTHIA jets embedded in a simulated background:

◆Toy model based on a thermal spectrum

$$f(p_T) = \begin{cases} e^{-p_T/T} & p_T \le \alpha T \\ e^{-\alpha} \left(\frac{\alpha T}{p_T}\right)^{\alpha} & p_T > \alpha T \end{cases}$$

lacktriangle Background particle distribution in Φ modeled by $\frac{dN}{d\phi} \propto 1 + \sum_n 2v_n \cos(n\phi)$

Compared with same PSM with Fast Jet to Giniar Results

Related works: Cacciari et al 1010.1759

Casalderrey et al. 1012.0745 Qin at al. 1012.5280

He et al. 1105.2566

Young et al. 1103.5769 Lokhtin et al. 1103.1853

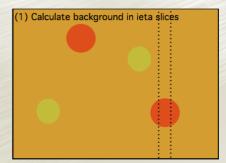
Renk 1202, 4579

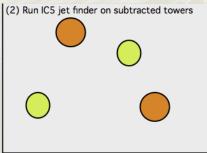
→ Main Goal:

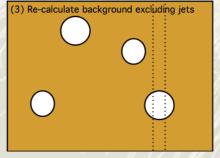
- → Investigate the effect of background fluctuations and subtraction on several jet observables
- +Assess the degree of quenching of the data
- →Our approach:
 - → Q-PYTHIA jets embedded in a simulated background:
 - ◆Toy model based on a thermal spectrum

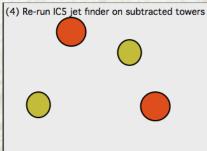
$$f(p_T) = \begin{cases} e^{-p_T/T} & p_T \le \alpha T \\ e^{-\alpha} \left(\frac{\alpha T}{p_T}\right)^{\alpha} & p_T > \alpha T \end{cases}$$

igspace Background particle distribution in Φ modeled by $\frac{dN}{d\phi} \propto$

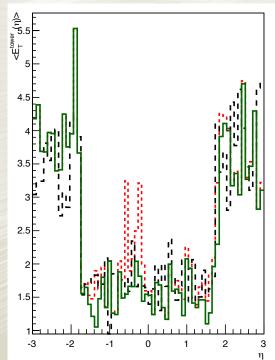

$$dV = \frac{dN}{d\phi} \propto 1 + \sum_{n} 2v_n \cos(n\phi)$$


- → Jet reconstruction algorithm
 - ★Anti-kt with R = 0.3
- → Jet background subtraction
 - ◆ATLAS-like (FastJet): kt with R = 0.4
 - → CMS-like: variant of "noise/pedestal subtraction" technique

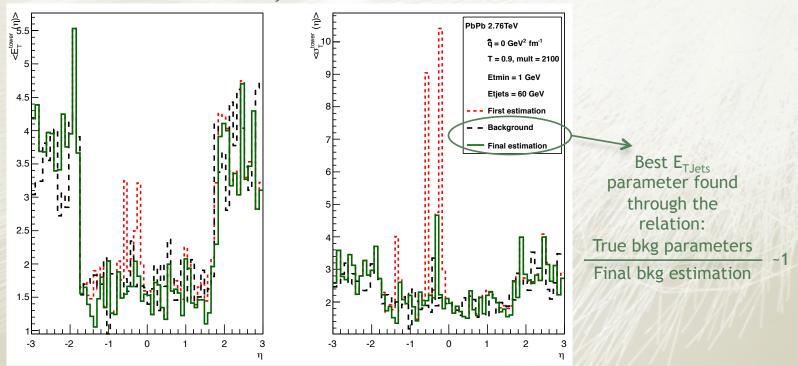

Compared with same Compared with same of the same of t


CMS-like Method

- → CMS-like subtraction method (Kodolova et al EPJC50 (07) 117):
 - → Background estimation:
 - → Variant of an iterative "noise/pedestal subtraction" technique:
 - +1.1) Background estimation in each stripe ($<E_T^{tower}(\eta)>$, σ_T^{tower})
 - ◆1.2) Correct each cell by: $E_T^{tower*} = E_T^{tower} \langle E_T^{tower}(η) \rangle \sigma_T^{tower}$
 - → 2.1) Jet finding algorithm over the activated towers
 - \star 3.1) Background estimation excluding jets from the previous list with E_T > E_{Tjets}
 - → 3.2) Correct each cell with the new values
 - → 4.1) Re-run of jet finding algorithm

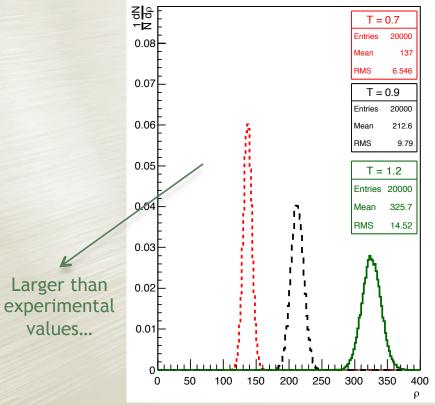


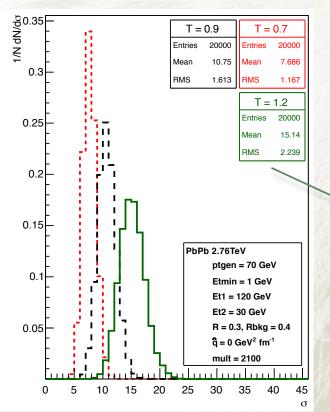
CMS-like Method


- + CMS-like subtraction method (background with $E_T < E_{Tiets}$)
 - → Background estimation:
 - ightharpoonup CMS tune: $E_{Tjets} = 15$ GeV in step 3.1)
 - → For our background: E_{Tjets} goes from 40 to 70 GeV (depends on T)

CMS-like Method

- + CMS-like subtraction method (background with $E_T < E_{Tjets}$)
 - → Background estimation:
 - ightharpoonup CMS tune: $E_{Tjets} = 15$ GeV in step 3.1)
 - → For our background: E_{Tjets} goes from 40 to 70 GeV (depends on T)

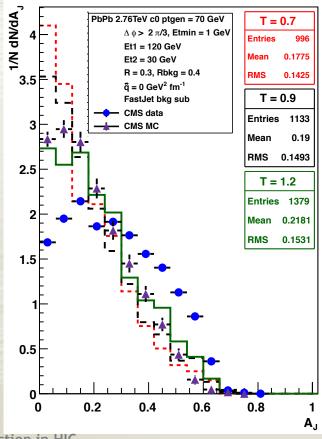


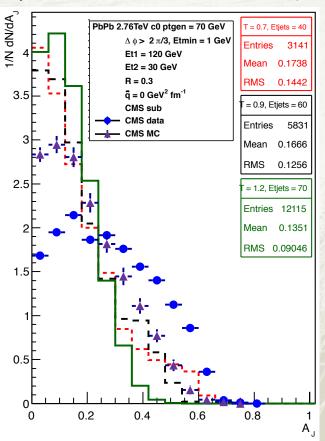

Toy Model

- + Values of ρ and σ :
 - → Multiplicity fixed to dN/dη~2100

$p_{ m t}^{ m min}$	$\langle ho angle$	$\sigma(ho)$
(GeV/c)	(GeV/c)	(GeV/c)
0-10%		
0.15	138.32 ± 0.02	18.51 ± 0.01
1.00	59.30 ± 0.01	9.27 ± 0.01
2.00	12.28 ± 0.01	3.29 ± 0.01

ALICE:1201.2423

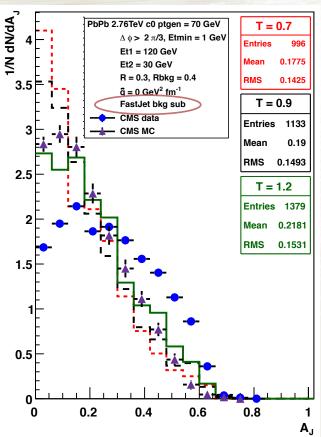


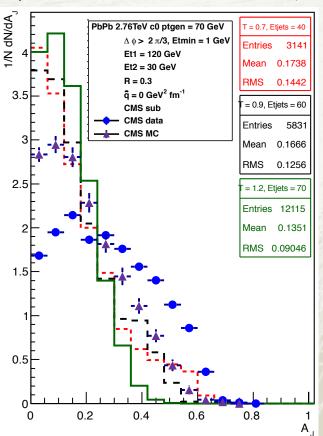

Reasonable
values of σ
(T = 0.9 can
reproduce σ
from ALICE
corrected for
neutral
particles)

Jet Reconstruction and Jet Subtraction (without quenching)

Comparison of the background subtraction methods (ATLAS-like and CMS-like)

- → Influence of the fluctuations on A_J:
 - → CMS data from 2011 run (arXiv:1102.5022: particle flow method and R = 0.3)

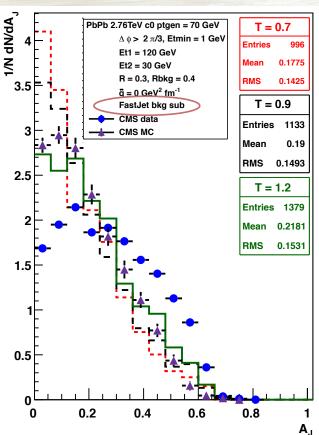


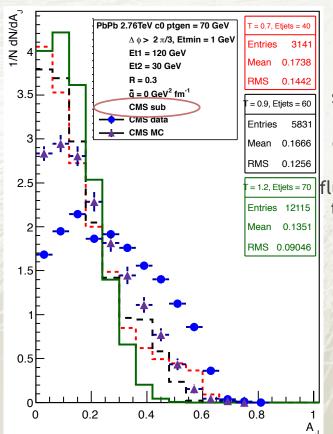


→ Influence of the fluctuations on A_J:

→ CMS data from 2011 run (arXiv:1102.5022: particle flow method and R = 0.3)

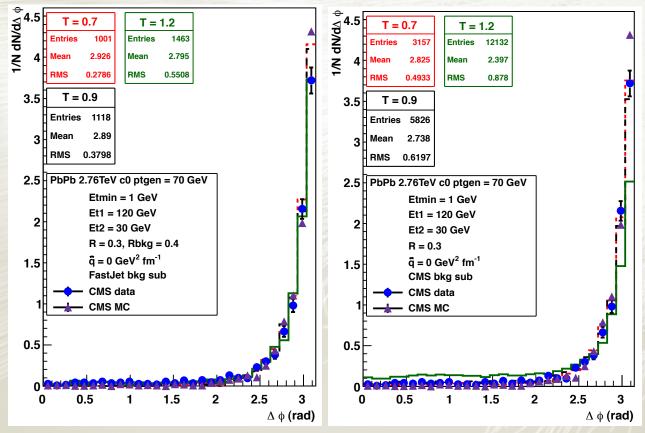
FastJet
subtraction:
Fluctuations
goes in the
same direction
than data but
no "realistic"
fluctuations
can account for
the large
asymmetry

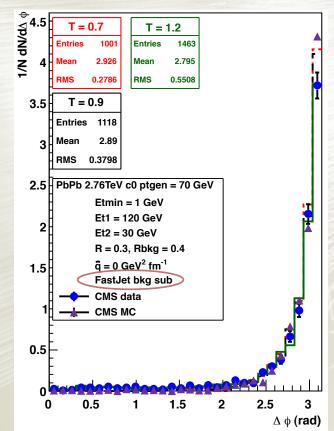


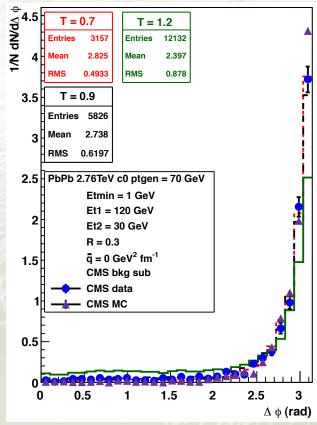


→ Influence of the fluctuations on A_J:

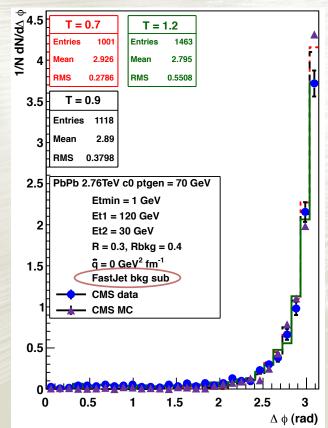
→ CMS data from 2011 run (arXiv:1102.5022: particle flow method and R = 0.3)

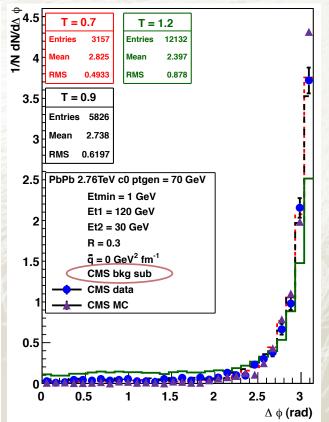

FastJet
subtraction:
Fluctuations
goes in the
same direction
than data but
no "realistic"
fluctuations
can account for
the large
asymmetry




CMS-like
subtraction:
Smaller
dependency
with
fluctuations up
to o~11 (red
and black
curve)

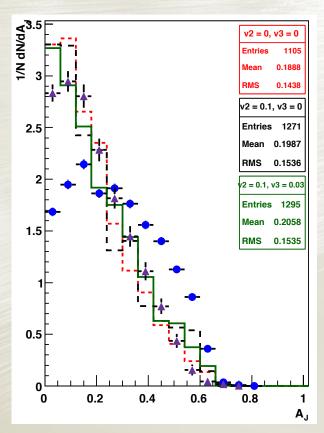
- + Influence of the fluctuations on $\Delta\Phi$:
 - → CMS data from 2010 run (arXiv:1102.1957: no particle flow method and R = 0.5)

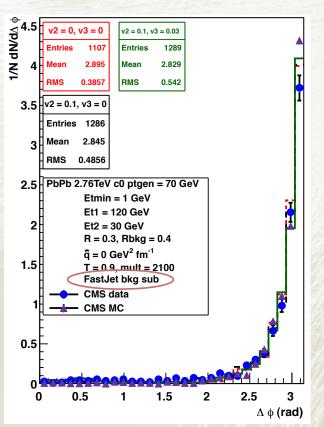

- + Influence of the fluctuations on $\Delta\Phi$:
 - → CMS data from 2010 run (arXiv:1102.1957: no particle flow method and R = 0.5)



FastJet subtraction does not present significant deviations

- + Influence of the fluctuations on $\Delta\Phi$:
 - → CMS data from 2010 run (arXiv:1102.1957: no particle flow method and R = 0.5)

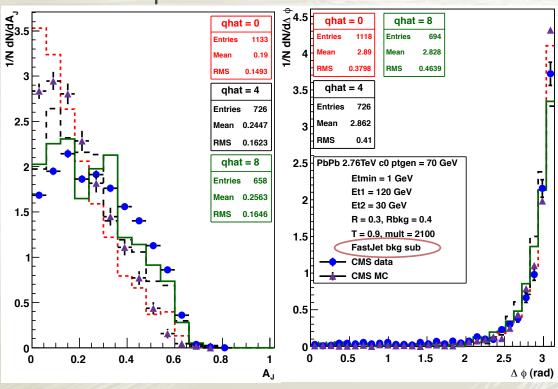



CMS-like
method, seems
to present a
higher
deviation for
larger
fluctuations
(for this kind of
background)

FastJet subtraction does not present significant deviations

→ Influence of v₂ and v₃ with the FastJet subtraction method:

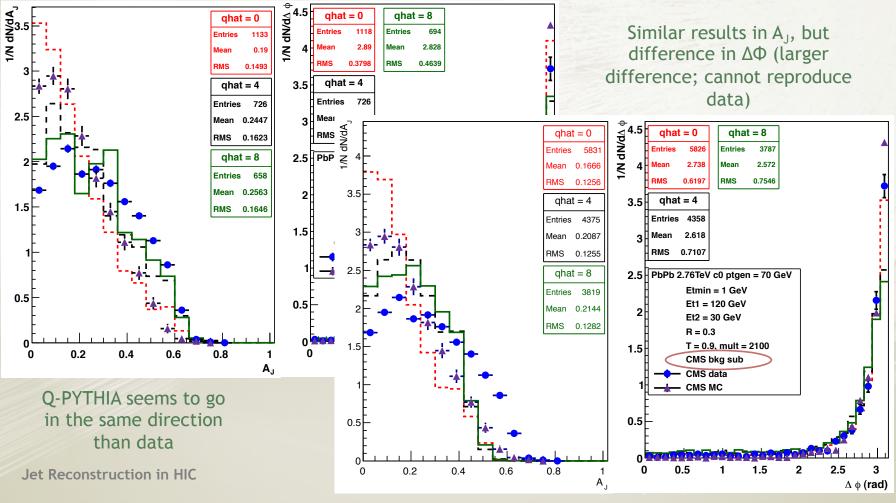
No meaningful change with "realistic" values of flow (v₂ up to 0.1 and v₃ up to 0.03) (Start only to present deviations when $\sigma \sim 20 \text{ GeV}$)


Quenching Effects

Q-PYTHIA MC = PYTHIA + BDMPS-like splitting functions into FSR routines

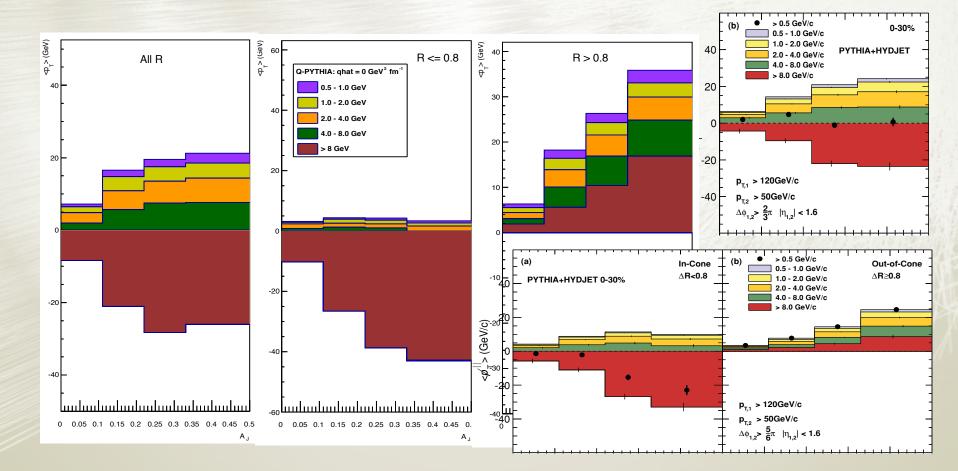
qhat $\alpha T_A T_B$ (PQM)

Asymmetry


→ Comparison for the two subtraction techniques:

Q-PYTHIA seems to go in the same direction than data

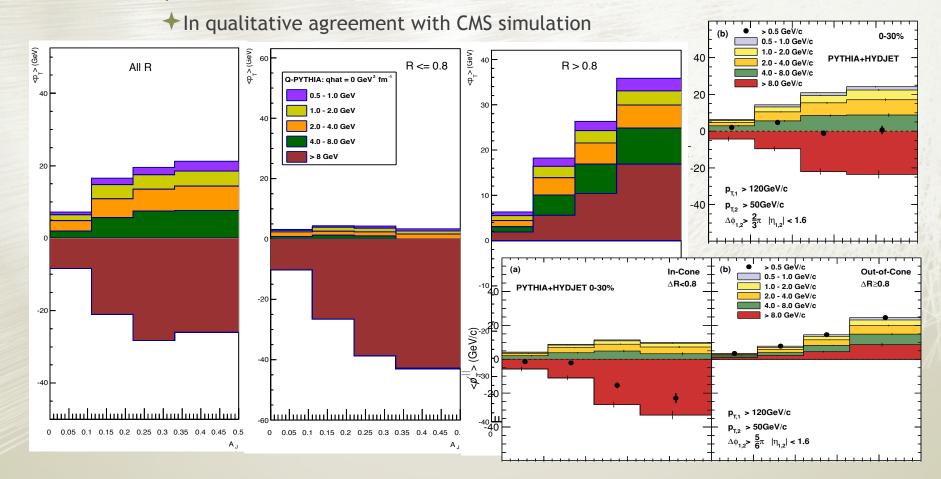
Asymmetry


→ Comparison for the two subtraction techniques:

(Average Missing Transverse Momentum)

→ Only Q-PYTHIA simulation (without background)

$$\left\langle p_T^{\parallel} \right\rangle = \sum_i -p_T^i \cos(\phi_i - \phi_{\text{leading jet}})$$

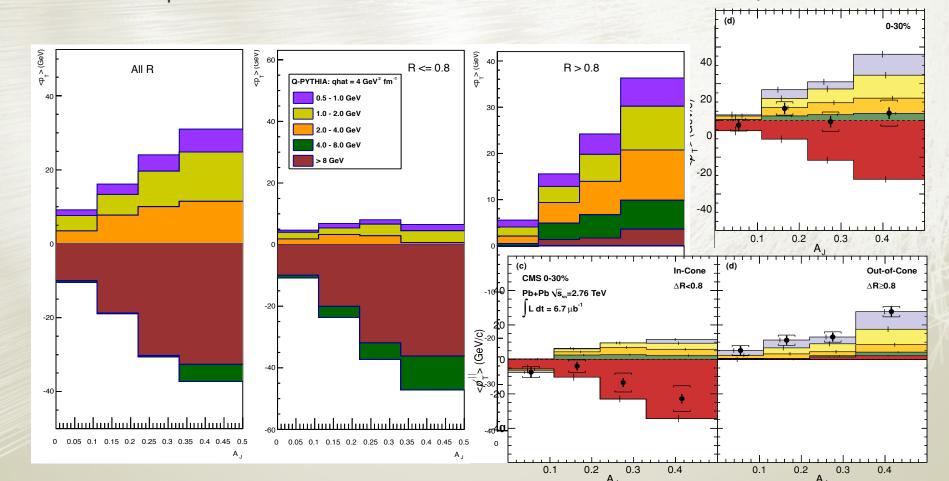


(Average Missing Transverse Momentum)

→ Only Q-PYTHIA simulation (without background)

$$+$$
 qhat = 0 GeV² fm⁻¹

$$\left\langle p_T^{\parallel} \right\rangle = \sum_i -p_T^i \cos(\phi_i - \phi_{\text{leading jet}})$$

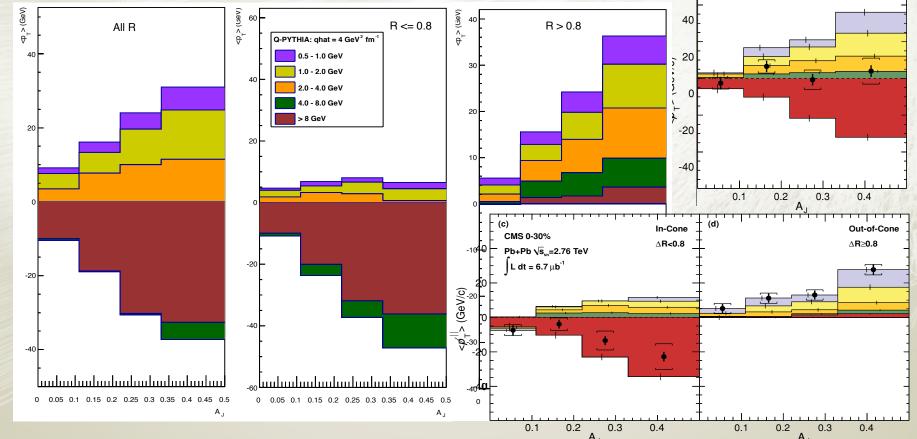


(Average Missing Transverse Momentum)

→ Only Q-PYTHIA simulation (without background)

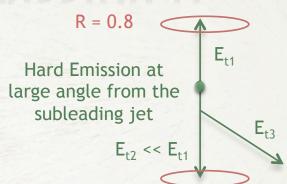
→ qhat = 4 GeV² fm⁻¹

 $\left\langle p_T^{\parallel} \right\rangle = \sum_i -p_T^i \cos(\phi_i - \phi_{\text{leading jet}})$

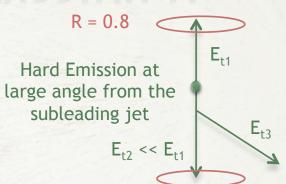

(Average Missing Transverse Momentum)

→ Only Q-PYTHIA simulation (without background)

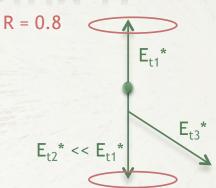
+ qhat = 4 GeV² fm⁻¹

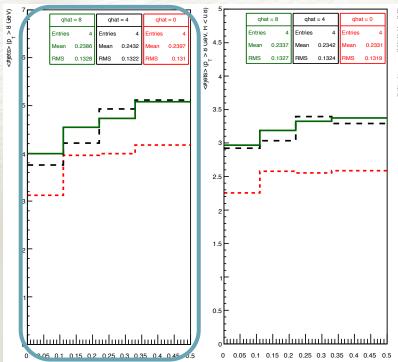

 $\left\langle p_T^{\parallel} \right\rangle = \sum_i -p_T^i \cos(\phi_i - \phi_{\text{leading jet}})$

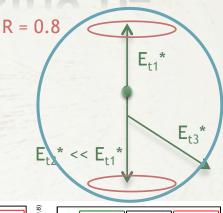
→ Qualitatively, goes in the same direction than data!



Missing PT


- → Higher difference for larger values of A_J:
 - \rightarrow Already in pp there are events with A_J > 0.3:
 - → Presence of tracks with p_T>8 GeV outside cone of R = 0.8 in simulation and PYTHIA


- → Higher difference for larger values of A_J:
 - \rightarrow Already in pp there are events with A_J > 0.3:
 - → Presence of tracks with p_T>8 GeV outside cone of R = 0.8 in simulation and PYTHIA
 - In data (PbPb), these tracks disappear, and also in Q-PYTHIA

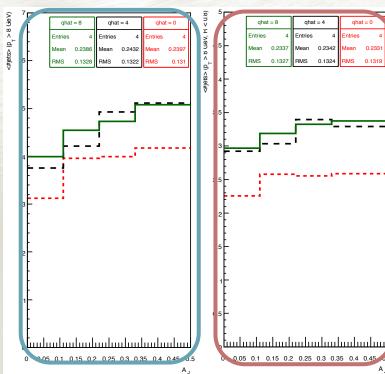


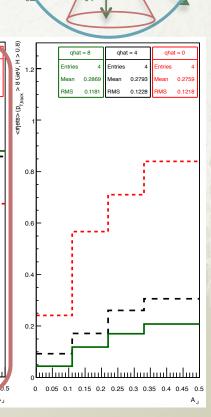
- → Higher difference for larger values of A_J:
 - \rightarrow Already in pp there are events with A_J > 0.3:
 - → Presence of tracks with $p_T>8$ GeV outside cone of R = 0.8 in simulation and PYTHIA
 - → In data (PbPb), these tracks disappear, and also in Q-PYTHIA
 - → Same events than before, but the third jet is now quenched (E_t*< E_t)
 - No compelling need of large angle emission mechanisms?

- → Higher difference for larger values of A_J:
 - \rightarrow Already in pp there are events with A_J > 0.3:
 - → Presence of tracks with p_T>8 GeV outside cone of R = 0.8 in simulation and PYTHIA
 - → In data (PbPb),
 these tracks
 disappear, and also
 in Q-PYTHIA
 - → Same events than before, but the third jet is now quenched (E_t*< E_t)
 - No compelling need of large angle emission mechanisms?

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

R = 0.8


→ Higher difference for larger values of A_J:

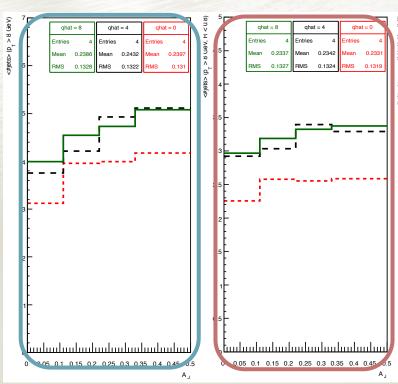

 \rightarrow Already in pp there are events with A_J > 0.3:

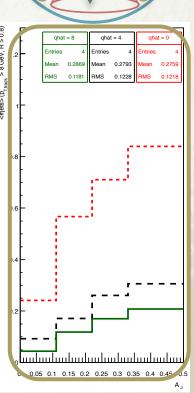
◆ Presence of tracks with p_T>8 GeV outside cone of R = 0.8 in simulation and PYTHIA

→ In data (PbPb),
these tracks
disappear, and also
in Q-PYTHIA

- → Same events than before, but the third jet is now quenched (E_t*< E_t)
 - No compelling need of large angle emission mechanisms?

R = 0.8


→ Higher difference for larger values of A_J:


→ Already in pp there are events with A₁ > 0.3:

◆ Presence of tracks with p_T>8 GeV outside cone of R = 0.8 in simulation and PYTHIA

→ In data (PbPb),
these tracks
disappear, and also
in Q-PYTHIA

- → Same events than before, but the third jet is now quenched (E_t*< E_t)
 - No compelling need of large angle emission mechanisms?

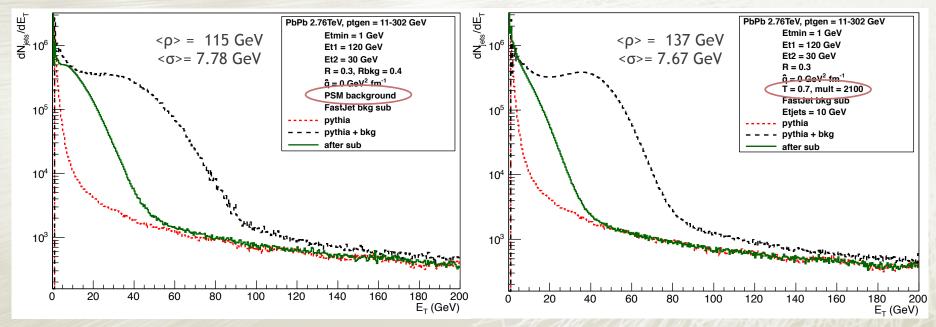
Conclusions

- → Background subtraction techniques:
 - → FastJet is sensible to background fluctuations (energy reconstruction)
 - Not affected by the particle structure of background (comparison with PSM gives similar results)

Conclusions

- → Background subtraction techniques:
 - → FastJet is sensible to background fluctuations (energy reconstruction)
 - Not affected by the particle structure of background (comparison with PSM gives similar results)
 - lacktriangle CMS-like seems to present some deviations in the angular reconstruction; has also a dependency with E_{tjets}
 - → Can be related to the intrinsic structure of the background
 - ightharpoonup To characterize a background, may be needed more than an effective ρ , and σ

Conclusions


- → Background subtraction techniques:
 - → FastJet is sensible to background fluctuations (energy reconstruction)
 - Not affected by the particle structure of background (comparison with PSM gives similar results)
 - lacktriangle CMS-like seems to present some deviations in the angular reconstruction; has also a dependency with E_{tjets}
 - ◆Can be related to the intrinsic structure of the background
 - lacktriangle To characterize a background, may be needed more than an effective ρ , and σ
- → Quenching with Q-PYTHIA model:
 - → Goes in the same direction than CMS data for the asymmetry
 - → Angular deviation still inside limits (for FastJet subtraction)
 - \star Goes in the right direction of the presence of the higher amount of soft particles at large angle (missing p_T)

Thank You!

Backup Slides

PSM vs Toy Model

- → Comparison of the jet spectrum subtracted:
 - → Subtraction method: FastJet (jet areas)

Close results:

Our toy model is a good approximation for jet studies
(pythia spectrum recovered for Etjets > 40 GeV for this background parameters)
Background subtraction method based on jet areas seems to be able to handle
quite well changes is the background structure

42