

Measurement of high-p_T azimuthal anisotropy in charged hadron production from 2.76 TeV PbPb collisions at CMS

Victoria Zhukova

University of Kansas

(On behalf of the CMS Collaboration)

CMS

Victoria.Zhukova@cern.ch Hard Probes 2012

Jet Quenching and Azimuthal Anisotropy

Fourier decomposition of charged hadron yields:

$$E\frac{d^3N}{d^3p} = \frac{1}{2\pi}\frac{d^2N}{p_tdp_tdy}\left(1 + \sum_{n=1}^{\infty} 2v_n \cos\left[n\left(\varphi - \Psi_R\right)\right]\right)$$

Azimuthal anisotropy (v₂) of high p_⊤ jets

Victoria.Zhukova@cern.ch Hard Probes 2012

Physics Motivation

$\Delta E \sim L^{\alpha}$

 α = 1 for pQCD, collisional α = 2 for pQCD, radiative α = 3 for AdS/CFT

Initial Conditions:

- -Glauber
- -Color Glass Condensate

$$R_{AA} = \frac{\sigma_{pp}^{inel}}{\langle N_{coll} \rangle} \frac{d^2 N_{AA} / dp_T d\eta}{d^2 \sigma_{pp} / dp_T d\eta}$$

Phys. Lett. B (2012) 710 256 Phys. Rev. Lett. (2011) 106 312301 Eur. Phys. J. C. (2012) 72 1945 JHEP 1205 (2012) 063

CMS Detector

Unprecedented kinematic range and acceptance

Victoria.Zhukova@cern.ch Hard Probes 2012

High p_T Single Track Trigger

- Full 2011 HI Data set: L_{int} = 150 µb⁻¹
- Single-Track High-p_T Triggers

```
(Total # of events: ~1.55M with p_T > 20 GeV/c )
```

 p_T > 12 GeV/c: ~ 9 million p_T > 20 GeV/c: ~1.55 million 20x more data in 2011!!

All triggers are at least 95% efficient (0-40%)

Event Plane Formalism

Avoiding Di-Jet Correlations

This minimizes systematic effects that result from back-to-back di-jets

η-Gap Study

Based on this study we conclude that the gap size of 3 is sufficient to suppress most of the back-to-back di-jet effects

η-Gap Study

Based on this study we conclude that the gap size of 3 is sufficient to suppress most of the back-to-back di-jet effects

v_2 as a function of $p_T(0 < |\eta| < 1)$

-First v_2 measurements for $p_T > 20 \text{GeV/c}$ -Gradual decrease of v_2 above $p_T \sim 10$ GeV/c

v_2 as a function of $p_T(1 < |\eta| < 2)$

-No significant η dependence of v_2

Theory Comparison

Theory: B. Betz, M. Gyulassy, arXiv:1201.0281

-Data can constrain different theoretical scenarios -However, a lot of complications in modeling still to be addressed (e.g., expansion of the system)

v₂ as a function of centrality

- Significant non-zero v_2 up to $p_T \sim 48$ GeV/c for all the centralities.

- For $p_T > 48$ GeV/c v_2 is consistent with 0 for all the centralities.

Summary

- The v₂ azimuthal anisotropy coefficient is determined over a wide coverage in p_T: 1< p_T < 60 GeV/c as a function of collision centrality based on the 2011 data sample.
- Above p_T~10GeV/c v₂ values show a gradual decrease with p_T, being consistent with zero only above p_T~48 GeV/c for all the centralities.
- Centrality dependence of v₂ is observed for both very-low- and high-p⊤ particles. It is consistent with path-length-dependent energy loss observed at high-p⊤ up to p⊤ ~ 35 GeV/c.

BACKUP

Victoria.Zhukova@cern.ch

Hard Probes 2012

Di-hadron Correlations Formalism

Signal pair distribution:

Background pair distribution:

Associated hadron yield per trigger:

$$\frac{1}{N_{trig}} \frac{d^2 N^{pair}}{d\Delta \eta d\Delta \phi} = B(0,0) \times \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)}$$

Du D

jet peak

Azimuthal Correlations at High p_T

- Clear and significant long-range near-side structure is observed for the first time for $p_r^{trig} > 20$ GeV/c.

