Measurement of v_n coefficients and Reaction-Plane Correlations in ATLAS

Soumya Mohapatra

Stony Brook University for the **ATLAS** Collaboration

ATLAS paper on v_n : <u>http://arxiv.org/abs/1203.3087</u>

A

ATLAS Reaction-Plane Correlation Note: <u>http://cdsweb.cern.ch/record/1451882</u>

Hard Probes 27th May-1st June 2012

Introduction and motivation

- Initial spatial fluctuations of nucleons lead to higher moments of deformations in the fireball, each with its own orientation.
- The spatial anisotropy is transferred to momentum space by collective flow.

• Studying the v_n and correlations between the Φ_n gives insight into the initial geometry and expansion mechanism of the fireball.

Soumya Mohapatra

ATLAS Detector

- Tracking coverage : |η|<2.5
- FCal coverage : 3.2<|η|<4.9 (used to determine Event Planes)
- For reaction plane correlations use entire EM calorimeters (-4.9 < η < 4.9)

Soumya Mohapatra

Stony Brook University

Event Plane $v_n(\eta, p_T, centrality)$

- Features of Fourier coefficients
 - v_n coefficients rise and fall with centrality.
 - v_n coefficients rise and fall with p_T .
 - v_n coefficients are ~boost invariant.

Obtaining harmonics from correlations

- a) The 2D correlation function in $\Delta \eta$, $\Delta \phi$.
- b) The corresponding 1D correlation function in $\Delta \phi$ for 2< $|\Delta \eta|$ <5 (the $|\Delta \eta|$ cut removes near side peak)
- c) The v_{n,n} obtained using a Discrete Fourier Transformation(DFT)
- d) Corresponding v_n values $v_n(p_T^a) = \sqrt{v_{n,n}(p_T^a, p_T^a)}$

Bands indicate systematic errors

Soumya Mohapatra

Stony Brook University

Centrality evolution of correlations

If single particle v_n dominates then near side peak must be larger than away side.

$$\frac{dN^{ab}}{d\Delta\phi} \propto \left(1 + 2\sum v_n^a v_n^b \cos(n\Delta\phi)\right)$$

- True till 50% centrality.
- Negative v_{1,1} is indicator of auto-correlation from away side jet.

Soumya Mohapatra

p_T evolution of correlations

p_T dependence of 2PC v_n

 $\mathbf{v}_{n,n}\left(\boldsymbol{p}_{T}^{a},\boldsymbol{p}_{T}^{b}\right)=\mathbf{v}_{n}\left(\boldsymbol{p}_{T}^{a}\right)\mathbf{v}_{n}\left(\boldsymbol{p}_{T}^{b}\right)$

 Obtain v_n using "fixed p_T" correlations

 $\mathbf{v}_{n}\left(\mathbf{p}_{T}^{a}\right) = \sqrt{\mathbf{v}_{n,n}\left(\mathbf{p}_{T}^{a},\mathbf{p}_{T}^{a}\right)}$

 cross-check via "mixedp_T" correlation

$$v_{n}(p_{T}^{b}) = \frac{v_{n,n}(p_{T}^{a}, p_{T}^{b})}{v_{n}(p_{T}^{a})}$$

Factorizations works for soft-soft and soft-hard correlations!

–∯– 2PC 3< p_T^a <4 GeV –●– EP full FCal

Soumya Mohapatra

Universality of v_n

- For harmonics $n \ge 2$, the scaling holds very well (for $|\Delta \eta| > 2$).
- For v_{1,1} the scaling doesn't hold.
 - $v_1(p_T^{b})$ depends on p_T^{a} showing the breakdown of the scaling relation.
 - Breakdown is mainly due to contributions from global momentum conservation

Soumya Mohapatra

Stony Brook University

v_{1,1} and v₁ Story

 For v_{1,1} the factorization breaks :: Influenced by global momentum conservation.

$$(p_T^a, p_T^b, \eta^a, \eta^b) \approx v_1(p_T^a, \eta^a) \times v_1(p_T^b, \eta^b) - \frac{p_T^a \times p_T^b}{M \langle p_T^2 \rangle}$$

- Second term is leading order approximation for momentum conservation
- V₁(η) has rapidity odd and rapidity even components:
- Odd component is <0.005 for |η|
 <2 at LHC, thus has contribution to v₁₁ (<2.5×10⁻⁵)
- If rapidity even component has weak η dependence, then:

$$v_{1,1}(p_T^a, p_T^b) \approx v_1(p_T^a) \times v_1(p_T^b) - \frac{p_T^a \times p_T^b}{M \langle p_T^2 \rangle}$$

Odd component: vanishes at $\eta=0$

Even component: ~boost invariant in η

ATLAS Collaboration

Soumya Mohapatra

 $v_{1,1}$

Stony Brook University

v_{1,1}(p_T^a, p_T^b)

 $- \bullet - 0.5 < p_T^a < 1 \text{ GeV}$ $- \bullet - 1 < p_T^a < 1.5 \text{ GeV}$ $- \bullet - 1.5 < p_T^a < 2 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text{ GeV}$ $- \bullet - 2 < p_T^a < 3 \text$

ATLAS Collaboration

Soumya Mohapatra

Stony Brook University

11

Extracting the η -even $v_1(p_T)$

 $v_{11}(p_T^a, p_T^b) = v_1^{Fit}(p_T^a) \times v_1^{Fit}(p_T^b) - c(p_T^a \times p_T^b)$

Red Points: v11 data

Black line : Fit to functional form

Blue line: momentum conservation component

Soumya Mohapatra

η -even v₁ (p_T)

- Significant v₁ values observed :: p_T dependence similar to other harmonics
- v_1 is negative for $p_T < 1.0 \text{GeV}$:: expected from hydro calculations.
- Value is comparable to v₃ :: showing significant dipole moment in initial state

13

Recovering the correlations from EP v

$$C(\Delta\phi) = b^{2P} (1 + 2\mathbf{v}_{1,1}^{2P} \cos\Delta\phi + 2\sum_{n=2}^{\circ} \mathbf{v}_n^{EP} \mathbf{v}_n^{EP} \cos n\Delta\phi)$$

From 2PC method

- Chose v_{1,1} and normalization to be same as original correlation function, but all other harmonics are from EP analysis.
- Correlation function is well reproduced, ridge and cone are recovered!
- Common physics origin for the near and away-side long range structures.

From EP method

Reaction-Plane Correlations

See Monday's talk by J. Jia (Parallel 1-C) for details.

• Further insight into initial geometry can be obtained by studying correlations between the Φ_n :

$$\frac{dN_{events}}{d(k(\Phi_n - \Phi_m))} = 1 + 2\sum_{j=1}^{\infty} V_{n,m}^j \cos(j \times k(\Phi_n - \Phi_m)) \quad :k = LCM(m,n)$$

$$V_{n,m}^j = \left\langle \cos(j \times k(\Phi_n - \Phi_m)) \right\rangle$$

$$arXiv:1205.3585$$

The measured correlations are corrected by the resolution factors:

$$\left\langle \cos(j \times k(\Phi_n - \Phi_m)) \right\rangle = \frac{\left\langle \cos(j \times k(\Psi_n - \Psi_m)) \right\rangle}{\operatorname{Res}(j \times k\Psi_n) \times \operatorname{Res}(j \times k\Psi_m)} \quad :: \quad \Phi_n = True, \ \Psi_n = Measured$$
arXiv: 1105.3928
PHENIX but no
corrections for reso.

 All correlations of planes (2≤n,m≤6) where the resolution is good enough to make conclusive measurements are studied.

Two-Plane Correlations

ATLAS Collaboration

Stony Brook University

Soumya Mohapatra

Three-Plane correlations

The procedure can be generalized to measure correlations involving three or more planes:

 $\left\langle \cos(c_1 \Phi_1 + 2c_2 \Phi_2 \dots lc_l \Phi_l)) \right\rangle$: $c_1 + 2c_2 + \dots lc_l = 0$ arxiv:1104.4740

- The following three plane correlations are studied: arXiv:1203.5095
 - 2-3-5: $2\Phi_2 + 3\Phi_3 5\Phi_5$, $8\Phi_2 3\Phi_3 5\Phi_5$
 - 2-4-6: $2\Phi_2+4\Phi_4-6\Phi_6$, $-10\Phi_2+4\Phi_4+6\Phi_6$
 - 2-3-4: $2\Phi_2-6\Phi_3+4\Phi_4$, $-10\Phi_2+6\Phi_3+4\Phi_4$
 - They involve combinations of planes (2≤n≤6) where the resolution is good enough to make measurements.
- One way to think of the three-plane correlations is as combination of two plane correlations:
 - $2\Phi_2 + 4\Phi_4 6\Phi_6 = 4(\Phi_4 \Phi_2) 6(\Phi_6 \Phi_2)$
 - $-10\Phi_2 + 4\Phi_4 + 6\Phi_6 = 4(\Phi_4 \Phi_2) + 6(\Phi_6 \Phi_2)$
 - Thus three plane correlations are the correlation of two angles relative to the third.

ATLAS Collaboration

arXiv:1205.3585

Three-Plane Correlations

Rich centrality dependence patterns are observed

Expectation from Glauber model

• Plane directions in configuration space

$$\epsilon_n = \frac{\sqrt{\langle r^n \cos(n\phi) \rangle^2 + \langle r^n \cos(n\phi) \rangle^2}}{\langle r^n \rangle}$$
$$\Phi_n^* = \frac{\operatorname{atan2}(\langle r^n \sin n\phi \rangle, \langle r^n \cos n\phi \rangle)}{n}$$

• Expected to be strongly modified by medium evolution in the final state

23

E₃

Summary

- Measured the v_n harmonics over a large p_T eta and centrality range.
- Studied the factorization behavior of v_{n,n}
 - It factorizes for n=2 to n=6 as long as one particle has low p_T (< 3GeV).
 - Factorization breaks for n=1.
- Extracted dipolar flow v₁ from v_{1,1} via a two component fit (accounting for momentum conservation).
 - v_1 is comparable to v_3 , indicating significant dipole deformation in the initial state.
- Concluded that the features in two particle correlations for $|\Delta \eta| > 2$ at low and intermediate p_T ($p_T < 4.0 GeV$) can be accounted for by the collective flow.
 - Double hump and ridge arise due to interplay of even and odd harmonics
- The v_n can be thought of diagonal components of a larger "Flow Matrix".
 - Studying the two and three plane correlations gives access to the off diagonal entries and beyond.
- These measurements together give insight into the initial geometry expansion mechanism of the fireball.