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The AdS/CFT Correspondence:
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The AdS/CFT Correspondence

Brownian Quark Stochastic String Pulling on Quark
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5D equilibrium is a competition between dissipative gravity and hawking radiation:

classical probability oc ¢~ %]

Again, its physics not math!



Outline:

1. What are strong strongly coupled plasma like?

- What are QCD plasmas like? Lattice spectral densities

2. Thermalization of strongly coupled plasmas

- Hydro everywhere, but viscous corrections important

3. Equilibration of high (?7??) momentum modes

- Limitations — Large N, and A



Strongly Coupled Plasmas and Lattice



QCD Lattice — Weak versus strong coupling how to tell?

e Lattice “measures” current-current correlation functions
psg = ([J(t), J(0)])

e Weakly coupled picture consists of two processes:
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Spectral functions weak and strong coupling

paste) = [ dtett (30, T(0)
Weak Coupling

p(w)

\ Quasi-Particles

Pair Continuum

W

2

Width of peak set by collisional time scale L Qg
T

C



Spectral functions weak and strong coupling
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No distinction between transport and continuum!

The most important strong coupling prediction!



Lattice Measurements

1. Lattice measures integrals of p

*dw  pyrw) wcoshw(rT —1/2T)
Gyy(T) = > :
0 2m w sinh(w/2T)
—— —
lattice measurements what we want

2. Always suffers from systematics

3. AS gOOd as |t W|” get fOI’ a gOOd Wh||e Brookhaven-Bielefeld group, Ding et al arXiv:1012.4963

- 1283 x 48 lattice.Very precise < 1%. Continuum extrapolated
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Weak View
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Lattice data are disastrously in between weak and strong
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Thermalization of Strongly Coupled Plasmas



Bjorken Expansion at weak coupling:

£ e Condition for hydro to apply:
= Expanding
e Collision rate >> Expansion Rate
0§ 5 1 7 e
Find:

1. Not easy to reconcile with weak coupling with hydro

(1fm)(300 MeV)
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2. For a fixed coupling as, need 1’7 larger enough to have hydro
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What about when avg — o0 ???



Strong coupling answer: (M. Heller et al, PRL)

e Find at strong coupling must have
0.6 < 7,15

before we can use (viscous) hydro
— | will review work of Michal Heller, R. Janik, R. Pechanski

— See also P. Chesler and L. Yaffe, lots of PRLs




The setup

e Specify intial conditions and solve
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- Immense number of initial conditions with the same initial energy density

* Specity initial conditions in the fifth dimension

- Specify an effective temperature Tog (7 ) from the EOS at all times

energy density(7) o< (Teff(T))4



Result:
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Remarkably fast convergence to the universal hydro regime



But, viscous corrections are important for everything
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Viscous corrections are important for all observables

e Photon production has important viscous correction (Dusling and Shu)

e Jet quenching parameters, i.e. g, gets important-anisotropic viscous corrections



Emission rate of non-equilibrium “Photons” and “Dileptons” (P. Chesler and DT)

e In equilibrium — Rate to emit = e~“/T x Rate abosrb

Driven out of equilibrium Relaxing to equilibrium
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High momentum lightlike modes and “Jets”



Jets by P. Arnold, D. Vaman (see also lancu, Mueller; Jensen, Chesler Yaffe)
e Construct a wave packe with energy £ and virtuality () in boundary theory

Q' =(F+¢€0,0,FE —¢) = Q° ~4Fe

e This wave packet maps to a bulk wave-packet which follows geodesics
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Additional points about AdS theory of Jets

boundary

—v

Virtuality limited Diffusion from Hawking Rad?

horizon

1. For Q2 large enough classical AdS theory doesn’t apply:  (p Amold, b. vaman, P. Szepietowski)

- All curvature higher corrections, e.g. R?, are the same size

V@2 < VAT (&) .

2. Maximum stopping stopping distance set by smallest possible virtuality
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AdS/CFT Jet Phenomenology

e What is high momentum?

p
— 1
T >

e But we have taken:

VA = 00 N? = oo

e This means that we are normally working in a regime where
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TV TNZ

L7z > 1itis largely unkown how to calculate.
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AdS Phenom for the timid Ads Phenom for the Brave!
2
P/(TN?) > 111!
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Use AdS light quark e-loss results here?




AdS/CFT vs. Peturbation Theory for heavy quarks — Slide by W. Horowitz

e Comparison with ALICE data — | kind of hoped it would work better
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How much do (strong) longitudinal fluctuations effect this result?




Conclusions

1. Holography can be a useful foil to perturbative thinking about plasma physics

- Are there soft quark and gluons quasi-particles?
2. Holography yields valuable insight into thermalization and hydrodynamics
3. Real QCD jets are not well described by holography.

4. Need to see holography “break-down” in a systematic way:

- Increased fluctuations at higher pp





