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5D equilibrium is a competition between dissipative gravity and hawking radiation:

classical probability ∝ e−βH[x,πx]

Again, its physics not math!



Outline:

1. What are strong strongly coupled plasma like?

- What are QCD plasmas like? Lattice spectral densities

2. Thermalization of strongly coupled plasmas

- Hydro everywhere, but viscous corrections important

3. Equilibration of high (???) momentum modes

- Limitations – Large Nc and λ



Strongly Coupled Plasmas and Lattice



QCD Lattice – Weak versus strong coupling how to tell?

• Lattice “measures” current-current correlation functions

ρJJ = 〈[J(t), J(0)]〉

• Weakly coupled picture consists of two processes:

J(0) J(t)

Pair Production at High Frequency Quasi Particles Moving at Low frequency

J(0) J(t)
#1 #2

Duration that quasi-particles move set by the collisional time scale

τc ∼
1

α2
sT



Spectral functions weak and strong coupling

ρJJ(ω) =

∫ ∞

−∞
dteiωt 〈[J(t), J(0)]〉

Weak Coupling

ωT

Quasi-Particles

Pair Continuum

∆ω ∼ 1
τc

ρJJ(ω)
ω

Width of peak set by collisional time scale 1
τc
∝ α2

s
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FIG. 1: (a) The spectral density of the stress energy tensor, πρyxyx
ττ (ω)/ω normalized by the shear

viscosity, ηAdS = πN2T 3/8. (b) The spectral density of the current-current correlator, πρJJ/ω

normalized by χsD = N2T 2/16πT . In both cases the dashed curves show the zero temperature

results (Eq. (B16) and Eq. (B17)) normalized by the same factors. Due to a non-renormalization

theorem in these channels, the zero temperature spectral densities in the free and interacting

theories are equal [32, 33]. At finite temperature the kinetic theory peak does not exist in the

strongly interacting theory.

III. RESULTS

The spectral density of the stress energy tensor

ρyxyx
ττ (ω) =

1

2π

∫

∞

−∞

dt e+iωt

∫

d3x 〈[T yx(x, t), T yx(0, 0)]〉 , (3.1)

is shown in Fig. 1(a). Similarly the spectral density for the R-charge current-current corre-
lator

ρJJ(ω) =
1

2π

∫

∞

−∞

dt e+iωt

∫

d3x 〈[Jx
a (x, t), Jx

a (0, 0)]〉 (no a sum) , (3.2)

is shown in Fig. 1(b). These are normalized so that

πρyxyx
ττ (ω)

ω

∣

∣

∣

∣

ω=0

= η , and
πρJJ(ω)

ω

∣

∣

∣

∣

ω=0

= χsD, (3.3)

where η is the shear viscosity, χs is the static R-charge susceptibility, and D is the R-charge
diffusion coefficient.

The remarkable feature of these spectral functions is the absence of any distinction be-
tween the transport time scales and the continuum time scales. For comparison, consider the
spectral density of the stress energy tensor in the free theory as worked out in Appendix A.
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⇢JJ(!)

!

No distinction between transport and continuum!

The most important strong coupling prediction!



Lattice Measurements

1. Lattice measures integrals of ρ

GJJ(τ)
︸ ︷︷ ︸

lattice measurements

=

∫ ∞

0

dω

2π

ρJJ(ω)

ω︸ ︷︷ ︸
what we want

ω coshω(τ − 1/2T )

sinh(ω/2T )

2. Always suffers from systematics

3. As good as it will get for a good while: Brookhaven-Bielefeld group, Ding et al arXiv:1012.4963

- 1283 × 48 lattice.Very precise <∼ 1%. Continuum extrapolated
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FIG. 7. Data for the continuum extrapolation of T 2GV (τT )/(χqG
free
V (τT )) and the fit result for fixed

cBW /Γ̃ and k(T ) (left). The three curves show the result from a fit in the interval τT ∈ [0.2 : 0.5] (central)

and results obtained by varying Γ̃ within its error band. In the right hand figure we show the spectral
function obtained from the fit and compare with the free spectral function.

correlated. Nonetheless, the fit provides an excellent description of the data. To illustrate the

sensitivity of our fit to the low energy Breit-Wigner contribution and its dependence on Euclidean

time, we show the fit to the data for GV (τT ) normalized to the free vector correlation function

and the quark number susceptibility in Fig. 7. The error band shown in this figure corresponds to

the width of the Breit-Wigner peak. The spectral function obtained from this fit is shown in the

right hand part of the figure. Here also the error band arising from a variation of the width Γ is

shown.

It is clear from Fig. 7, that the vector correlation function is sensitive to the low energy, Breit-

Wigner contribution only for distances τT>∼0.25. Taking into account also the value of the second

thermal moment, the fits to the large distance regime return fit parameters which are well con-

strained. As a consequence we obtain a significant result for the electrical conductivity, which is

directly proportional to the fit parameter cBW /Γ̃,

σ

T
=

Cem

6
lim
ω→0

ρii(ω)

ωT
=

2Cem

3

cBW χ̃q

Γ̃
= (0.37 ± 0.01)Cem , (V.9)

which (accidentally) is close to the result found in [20] using staggered fermions with unrenormal-

ized currents. It is more than an order of magnitude larger than the electrical conductivity in a

pion gas [40].

It should be obvious that this determination of the electrical conductivity is sensitive to the

ansatz made for the spectral function in our analysis of the correlation functions. With this simple

ansatz we obtain good fits of the vector correlation function with a very small chi-square per degree

of freedom. However other ansätze may provide an equally good description of the current set of

data. We will explore this in the next subsection by generalizing the current ansatz.

We also note that the value determined for the correction to the free field behavior at large

energies k " 0.05 at T " 1.45Tc is quite reasonable. Using the relation to the perturbative result,

k = αs/π yields for the temperature dependent running coupling g2(T ) = 4παs " 2 which is in

good agreement with other determinations of temperature dependent running couplings at high

 Fits to Euclidean Data

Determined  spectral function
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ansatz we obtain good fits of the vector correlation function with a very small chi-square per degree

of freedom. However other ansätze may provide an equally good description of the current set of

data. We will explore this in the next subsection by generalizing the current ansatz.

We also note that the value determined for the correction to the free field behavior at large
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It is clear from Fig. 7, that the vector correlation function is sensitive to the low energy, Breit-

Wigner contribution only for distances τT>∼0.25. Taking into account also the value of the second

thermal moment, the fits to the large distance regime return fit parameters which are well con-

strained. As a consequence we obtain a significant result for the electrical conductivity, which is

directly proportional to the fit parameter cBW /Γ̃,
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which (accidentally) is close to the result found in [20] using staggered fermions with unrenormal-

ized currents. It is more than an order of magnitude larger than the electrical conductivity in a

pion gas [40].

It should be obvious that this determination of the electrical conductivity is sensitive to the

ansatz made for the spectral function in our analysis of the correlation functions. With this simple

ansatz we obtain good fits of the vector correlation function with a very small chi-square per degree

of freedom. However other ansätze may provide an equally good description of the current set of

data. We will explore this in the next subsection by generalizing the current ansatz.

We also note that the value determined for the correction to the free field behavior at large

energies k " 0.05 at T " 1.45Tc is quite reasonable. Using the relation to the perturbative result,

k = αs/π yields for the temperature dependent running coupling g2(T ) = 4παs " 2 which is in

good agreement with other determinations of temperature dependent running couplings at high
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close enough

Lattice data are disastrously in between weak and strong



Thermalization of Strongly Coupled Plasmas



Bjorken Expansion at weak coupling:
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Collision rate︸ ︷︷ ︸
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� Expansion Rate︸ ︷︷ ︸
∼1/τo

Find:

1. Not easy to reconcile with weak coupling with hydro

α2
s � 0.66× (1 fm)(300MeV)

τoTo

2. For a fixed coupling αs, need Tτ larger enough to have hydro

1

α2
s

� τT
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Find:

1. Not easy to reconcile with weak coupling with hydro
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s � 0.66× (1 fm)(300MeV)

τoTo

2. For a fixed coupling αs, need Tτ larger enough to have hydro

1

α2
s

� τT

︸ ︷︷ ︸
What about when αs →∞ ???



Strong coupling answer: (M. Heller et al, PRL)

• Find at strong coupling must have

0.65 <∼ τoTo

before we can use (viscous) hydro

– I will review work of Michal Heller, R. Janik, R. Pechanski

– See also P. Chesler and L. Yaffe, lots of PRLs



The setup

• Specify intial conditions and solve
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- Immense number of initial conditions with the same initial energy density

* Specify initial conditions in the fifth dimension

- Specify an effective temperature Teff(τ) from the EOS at all times

energy density(τ) ∝ (Teff(τ))
4



Result:

0 0.2 0.4 0.6 w

0.5

1.5

F HwL
w

⌧Te↵

Different initial conditions
relaxing to hydro

Hydro 1st and 2nd order

Hydro 3rd order

hydro
regime
starts

d log(⌧Te↵)

d log ⌧

Remarkably fast convergence to the universal hydro regime



But, viscous corrections are important for everything

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4w0.0
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pT � pL
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/

Hydro applies but anisotropic

a sample init condition

Hydros 1st,2nd,3rd

pT � pL

pT + pL
' 1

3

Viscous corrections are important for all observables

• Photon production has important viscous correction (Dusling and Shu)

• Jet quenching parameters, i.e. q̂, gets important-anisotropic viscous corrections



Emission rate of non-equilibrium “Photons” and “Dileptons” (P. Chesler and DT)

• In equilibrium – Rate to emit = e−ω/T × Rate abosrb
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High momentum lightlike modes and “Jets”



Jets by P. Arnold, D. Vaman (see also Iancu, Mueller; Jensen, Chesler Yaffe)

• Construct a wave packe with energy E and virtuality Q in boundary theory

Qµ = (E + ε, 0, 0, E − ε)⇒ Q2 ' 4Eε

• This wave packet maps to a bulk wave-packet which follows geodesics

xstop(Q
2) ∝ 1

T

(
E2

Q2

)1/4

∝ 1

T

(
E

ε

)1/4

x3 x30

horizon

z
(a)

boundary
0

horizon

z
(b)

boundary

FIG. 5: As the wave packet falls towards the horizon, the effects of its R charge on the boundary

theory redshifts, corresponding to a hydrodynamically diffusing charge density measured in the

4-dimensional plasma.

charge. The presence of the wave packet in the bulk produces a response in the boundary
fields that are dual to R charge, as depicted in fig. 5a. As the 5-dimensional wave packet
approaches the horizon, this disturbance is further and further red-shifted, which corresponds
to hydrodynamic diffusion of the charge density in the boundary theory, as depicted at later
times in fig. 5b. In the λ=∞ calculation, the charge distribution is centered in x3 over the
position of the wave packet as it approaches the horizon. For the particular type of jets
we study in this paper, more detail may be found by comparing refs. [4] and [5], but the
same type of behavior occurs in earlier works on jets dual to classical strings [1, 3, 19]. Our
assumption will be that this correspondence continues for high-energy jets at large but finite
λ:

Assumption 2. 1/λ corrections do not significantly modify the (approximate)
equality between (i) the late-time x3 position of the 5-dimensional wave packet as
it approaches the horizon and (ii) the position where the jet stops and thermalizes
in the 4-dimensional field theory as measured, for example, by the center of the
late-time diffusing distribution of R charge.

In particular, in this paper we will not attempt to make a thorough analysis of 1/λ corrections
to the coupling between the 5-dimensional wave packet and the 5-dimensional gauge field
bulk-to-boundary propagator associated with making a late-time measurement of the R
charge distribution.12 (Nor will we make the corresponding analysis for the coupling between
the wave packet and the graviton propagator associated with making a measurement of the

12 As discussed in ref. [4], the bulk-to-boundary propagator associated with the late-time measurement

is a low-momentum propagator. This propagator therefore contains no powers of large energy E that

could compensate powers of 1/λ, and so the corrections to that propagator are always small for large

finite λ. When one extracts from the hydrodynamic response the place in the plasma where the charge

was deposited, by applying the 4-dimensional diffusion operator (∂t − DR∇2) as in refs. [4, 19], the

5-dimensional bulk-to-boundary propagator just discussed gets truncated and only has support at the

4-position of the bulk vertex. (See, for example, the related discussion in sec. III.D of ref. [17].) Formally,

that means that charge deposition only has support for 4-positions traveled through by the high-energy

5-dimensional wave packet created by the source. One might think this guarantees the validity of our

Assumption 2. However, it is possible for a series of local functions to add up to something with support

12

xstop(Q2)

initial height and slope fixed by Q2 and Q2/E



Additional points about AdS theory of Jets

Virtuality limited Diffusion from Hawking Rad?

boundary

horizon

1. For Q2 large enough classical AdS theory doesn’t apply: (P. Arnold, D. Vaman, P. Szepietowski )

- All curvature higher corrections, e.g. R4, are the same size

√
Q2 �

√
λT

(
E√
λT

)1/3

2. Maximum stopping stopping distance set by smallest possible virtuality

size of wave-packet ' xmax
stop ∝

1

T

(
E

T

)1/3



AdS/CFT Jet Phenomenology

• What is high momentum?
p

T
� 1

• But we have taken:

√
λ→∞ N2

c →∞

• This means that we are normally working in a regime where

p

T
√
λ
� 1

p

TN2
c

� 1

When p
TN2

c
� 1 it is largely unkown how to calculate.
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AdS/CFT vs. Peturbation Theory for heavy quarks – Slide by W. Horowitz

• Comparison with ALICE data – I kind of hoped it would work better
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FIGURE 2. (a) RDAA(pT ) predictions from an AdS/CFT drag model [18] and constrained RDAA(pT ) and Rπ0AA(pT ) predictions from
WHDG [3, 2] compared to preliminary ALICE data [14] at

√
s = 2.76 ATeV and 0-20% centrality at LHC. Constrained (b) RBAA(pT )

and (c) RDAA(pT )/RBAA(pT ) predictions from WHDG and AdS/CFT drag models at
√
s = 2.76 ATeV and 0-20% centrality at LHC.

the vπ02 (pT ! 9 GeV/c) [19] and a quantitative underprediction of non-photonic electron suppression [3]. However,
constrained to RHIC data, we find the pQCD-based WHDG energy loss calculation qualitatively describes the light
hadron suppression and quantitatively describes the azimuthal anisotropy and heavy meson suppression at LHC, using
no free parameters. Nevertheless, one must be cautious in these comparisons to data as there are a large number of
theoretical uncertainties that are not yet taken into account in the WHDG—nor fully in any other pQCD-based energy
loss—model: higher order effects in opacity [20], coupling [5], heavy quark mass (divided by parton energy) [5],
collinearity [21]; initial conditions [22]; energy loss in confined matter [23]. On the other hand, the heavy quark
drag calculations appear to oversuppress the D mesons compared to the central values of the data, although the
results are not completely inconsistent with the data within the current, large experimental uncertainties. Similar to the
perturbative calculations, there are many theoretical uncertainties in the drag calculations that should give one pause
when comparing to experimental data; for instance the derivations were performed in N = 4 SYM [24] and higher
order corrections from, e.g., loops and quark mass to plasma temperature [25] have not yet been taken in to account.
We look forward to the future measurements of B meson suppression and the double ratio of RDAA(pT )/RBAA(pT ) at
LHC which will help distinguish between the energy loss mechanics dominant in heavy ion collisions.
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Conclusions

1. Holography can be a useful foil to perturbative thinking about plasma physics

- Are there soft quark and gluons quasi-particles?

2. Holography yields valuable insight into thermalization and hydrodynamics

3. Real QCD jets are not well described by holography.

4. Need to see holography “break-down” in a systematic way:

- Increased fluctuations at higher pT




