Measurement of Charmonium Production in PbPb Collisions at 2.76 TeV with CMS

Dong Ho Moon Korea Univ. On behalf of CMS

Hard Probes 2012 @ Cagliari, Italy

- Introduction
- 2010 PbPb Run (JHEP 1205 (2012) 063)
- 2011 PbPb Run
- Summary

Quarkonia in heavy-ion collisions

- One of most powerful tools to understand the QGP
 - Heavy quarks created at the early stage and with a large momentum transfer in gluon-gluon fusion.
 - Sequential melting
 - By Debye screening.
 - Play a role to quantify medium properties (as thermometer).

Puzzles at previous experiments

At RHIC & SPS

- Similar suppression trends observed
 - Effect of recombination?
- More suppression at forward rapidity •
 - Effect of recombination ?
 - Gluon saturation?
 - Shadowing?
- So, how about the LHC?
 - Enhancement by a recombination.
 - Further suppression by a increased temperature.

CMS detector

Muon reconstruction

- Excellent muon identification & triggering in muon system.
- Excellent momentum resolution of tracking system.
 - Overall resolution: 1~2 %

Dimuon spectrum in 2010 PbPb

Dong Ho Moon (Korea Univ.) Hard Probes 2012

7

Prompt/non-prompt J/ψ

- Reconstruct opposite sign muon vertex
- 2-D unbinned maximum likelihood fit of dimuon mass and pseudo-proper decay length (I_{J/ψ})

$$T/\psi = L_{xy} \frac{m_{J/\psi}}{p_T}$$
 B J/ψ μ

So far, the only time that prompt and non-prompt J/ψ are separated in heavy-ion collisions

l.

R_{AA} of prompt J/ ψ vs N_{part}

JHEP 1205 (2012) 063

- At most central (0 10%) suppressed by factor 5 with respect to pp.
- At peripheral (50 100 %) suppressed by factor 1.6 with respect to pp.
- STAR measures less suppression at high p_T (> 5 GeV/c) and mid-rapidity.
- CMS and PHENIX observe similar magnitude, though different p_T .

R_{AA} of prompt J/ ψ vs N_{part}

JHEP 1205 (2012) 063

- ALICE (inclusive J/ψ) measured less suppression and centrality dependence than CMS at forward rapidity (2.5 < y < 4.0) and low p_T down to 0.
- If regeneration, expected at low p_T, thus more in ALICE than in CMS.
- Note: R_{AA} of prompt J/ ψ could shift down by ~11 % due to ~10 % b-fraction at low p_T in pp at ALICE.

R_{AA} of prompt J/ ψ vs N_{part}

Theory comparison

Ferreiro et al. (preliminary)

In this calculation, recombination not significant for $p_T > 6.5$ GeV/c

CNM effects are too small to account for the full suppression

R_{AA} of prompt J/ ψ vs p_T & y

\Box p_T dependence

- CMS ($p_{T} > 6.5 \text{ GeV/c}$)
 - Suppressed by a factor 3.
- STAR (5 < p_T < 8 GeV/c)
 - No significant suppression at high p_{T} .

□ y dependence

- CMS ($p_{T} > 6.5 \text{ GeV/c}$)
 - Slightly less suppression at forward rapidity.
- PHENIX: lower p_{T}
 - Opposite trend of rapidity dependence.

JHEP 1205 (2012) 063

Hard Probes 2012

R_{AA} of $B \to J/\psi$

JHEP 1205 (2012) 063

- Suppression of non-prompt J/ψ observed in min. bias and central PbPb collisions.
- No strong dependence of centrality.
 - First indications of b-quark quenching !

PRL 106 (2011) 212301 CMS-HIN-11-008 PLB 710 (2012) 256 EPJ C 72 (2012) 1945 JHEP 1205 (2012) 063

Dimuon spectrum in 2011 PbPb

Dimuon spectrum in 2011 PbPb

$\psi(2s)$ in PbPb & pp @ $\sqrt{s_{NN}} = 2.76$ TeV

- $R_{\psi(2S)}$ (Raw ratio of $\psi(2S)$ / J/ ψ) in |y| < 1.6 and 6.5 < p_T < 30 GeV/c.
 - PbPb, 0-20 %: 0.024 ± 0.008 (stat.)
 - pp: 0.049 ± 0.010 (stat.)
 - $R_{\psi(2S)}$ in PbPb is ~2 times smaller than pp.

$\psi(2s)$ in PbPb & pp @ $\sqrt{s_{NN}} = 2.76$ TeV

- $R_{\psi(2S)}$ (Raw ratio of $\psi(2S) / J/\psi$) in 1.6 < |y| < 2.4 and 3 < p_T < 30 GeV/c.
 - PbPb, 0-20 %: 0.105 ± 0.020 (stat.)
 - pp: 0.020 ± 0.007 (stat.)
 - $R_{\psi(2S)}$ in PbPb is ~5 times larger than pp.

Double ratio of $\psi(2s) \& J/\psi$

from pp) are large).

Summary

- CMS measured R_{AA} of prompt and non-prompt J/ ψ separately in heavy-ion collisions.
 - Prompt J/ ψ suppressed significantly at high p_T .
 - Non-prompt J/ψ suppressed (indicating b-quark quenching).
- Double ratio of charmonium (ψ(2S) and J/ψ) measurement is performed, using 150 μb⁻¹ taken in 2011.
- Different features of $\psi(2S)$ are observed at lower p_T (forward rapidity) and high p_T (mid-rapidity) regions.
 - stronger suppression than J/ψ at high p_T and mid-rapidity.
 - less suppressed than J/ψ at lower p_T and forward rapidity, but uncertainties are large (need more pp).

Back Up

Double ratio of $\psi(2s) \& J/\psi$

CMS-HIN-12-007

- For p_T >3 GeV/c and 1.6<|y|<2.4: large uncertainties on pp Indication of $\psi(2S)$ being less suppressed than J/ ψ
 - Significance: not more than 2σ , work is ongoing, but we need more pp!
- For p_{T} > 6.5 GeV/c and |y| < 1.6: $\psi(2S)$ are more suppressed than J/ ψ

Data taking in 2010 PbPb (pp) run

- Recorded luminosity PbPb: 7.28 μ b⁻¹ ($\sqrt{s_{NN}}$ = 2.76 TeV).
- Reference pp data: 231 nb⁻¹ ($\sqrt{s_{NN}}$ = 2.76 TeV).

Acceptance and efficiency

- MC simulation with PYTHIA + HYDJET.
- No acceptance in mid-rapidity for J/ ψ with p_T < 6.5 GeV/c but in the forward region 3GeV/c is reached
- Validated by data driven method(Tag and Probe technique) between MC and data

Dimuon spectrum in 2010 PbPb

pp reference for R_{AA}

- 231 nb⁻¹ data reconstructed by heavy-ion algorithm •
- Different trigger condition (HLT_L1DoubleMu0 slightly higher quality) ۲
- Same acceptance and efficiency condition as heavy-ion analysis ٠

Comparison reco algo

- HI tracking algorithm uses vertex constraint
 - Smaller efficiency for non-prompt than for prompt
 - Effect increases with p_T

Single muon acceptance

$$\begin{split} p_{\rm T}^{\mu} &> 3.4\,{\rm GeV/c} & {\rm for}\; |\eta^{\mu}| < 1.0, \\ p_{\rm T}^{\mu} &> (5.8-2.4\times|\eta^{\mu}|)\,{\rm GeV/c} & {\rm for}\; 1.0 < |\eta^{\mu}| < 1.5, \\ p_{\rm T}^{\mu} &> (3.4-0.78\times|\eta^{\mu}|)\,{\rm GeV/c} & {\rm for}\; 1.5 < |\eta^{\mu}| < 2.4. \end{split}$$

Systematic uncertainties

Table 2: Point-to-point systematic uncertainties on the prompt J/ ψ , non-prompt J/ ψ , and Y(1S) yields measured in PbPb collisions.

	prompt J/ψ (%)	non-prompt J/ψ (%)	Y(1S) (%)
Yield extraction	0.5–5.7	1.5-14.0	8.7–13.4
Efficiency	1.8-3.4	2.2-4.2	1.4-2.7
Acceptance	0.9-4.2	2.0-3.2	1.5-2.8
MC Validation	13.7	13.7	13.7
Stand-alone μ reco.	1.0	1.0	1.0
T_{AA}	4.3-15.0	4.6-8.6	4.3-8.6
Total	15–21	15–21	18–20

Table 3: Point-to-point systematic uncertainties on the prompt J/ ψ , non-prompt J/ ψ , and Y(1S) yields measured in pp collisions.

	prompt J/ψ (%)	non-prompt J/ψ (%)	Y(1S) (%)
Yield extraction	0.8–5.3	5.3–16.8	10.0
Efficiency	1.6-3.0	1.4-2.0	0.4-0.9
Acceptance	0.9-4.2	2.0-3.2	1.5-2.8
MC Validation	13.7	13.7	13.7
Stand-alone μ reco.	1.0	1.0	1.0
Total	14–16	15–22	17–18

Tag and probe

- Tracking efficiency:
- •Tag: high quality muon
- •Probe: track in the muon station
- •Passing Probe:
 - Probe that is also reconstructed as global muon (i.e. with a track in the Si-tracker)
- •Reconstruct J/ψ peak in passing probe-tag pairs and in failing probe-tag pairs
- •Simultaneous fit to passing and failing probes allows us to measure the efficiency of the inner track reconstruction
- •Agreement within stat. uncertainty of data → 14% systematic uncertainty on data/MC agreement
 - dominant systematic uncertainties on cross section results in PbPb

ALICE results

