Quarkonia and heavy-flavour production in CMS

- Torsten Dahms -LLR - École Polytechnique (on behalf of CMS)

Quarkonia and the QGP

- Heavy quarks
 - produced in the initial hard-scattering process
- Debye screening in QGP leads to melting of quarkonia
- Different binding energy of bound states lead to sequential melting of the states with increasing temperature
 - also observable in the rates of the ground state due to suppression of feed down contribution
 T/T_c 1/(r) [fm⁻¹]

State	J/ψ (1S)	χ_c (1P)	ψ' (2S)
m (GeV/c ²)	3.10	3.53	3.68
<i>r</i> ₀ (fm)	0.50	0.72	0.90

Υ (1S)	χ_b (1P)	Υ´ (2S)	χ'_{b} (2P)	Ϋ́ (3S)
9.46	9.99	10.02	10.26	10.36
0.28	0.44	0.56	0.68	0.78

Quarkonia in pp with CMS: Carlos Lourenco (Tuesday, 14h15) The beginning: Matsui & Satz PLB 178 (1986) 416

Puzzles from SPS and RHIC

- Similar J/ ψ suppression at the SPS and RHIC!
 - despite 10× higher $\sqrt{s_{NN}}$
- Suppression does not increase with local energy density
 - R_{AA} (forward)< R_{AA} (mid)
- Possible ingredients
 - cold nuclear matter effects
 - sequential melting
 - regeneration
- What happens at the LHC?
 - higher energy + higher luminosity
 - more charm (more regeneration?)
 - more bottom \rightarrow a new probe: Υ

PHENIX, PRL 98 (2007) 232301 also PRC 84 (2011) 054912 SPS from Scomparin @ QM06

The Compact Muon Solenoid

Muon Reconstruction in CMS

- Global muons reconstructed with information from
 inner tracker and muon stations
- Further muon ID based on track quality (χ^2 , # hits...)

Dimuon Acceptance: J/ ψ

- Muons need to overcome magnetic field and energy loss in absorber
 - minimum total momentum
 p~3–5 GeV/c to reach
 muon station
 - Limits J/ ψ acceptance:
 - mid-rapidity: $p_T > 6.5 \text{ GeV/c}$
 - forward: p_T >3 GeV/c

Dimuon Acceptance: Υ(1S)

- Muons need to overcome magnetic field and energy loss in absorber
 - minimum total momentum
 p~3–5 GeV/c to reach
 muon station
 - Limits J/ ψ acceptance:
 - mid-rapidity: $p_T > 6.5 \text{ GeV/c}$
 - forward: p_T >3 GeV/c
 - Y acceptance:
 - $p_T > 0$ GeV/c for all rapidity

Muon Pairs in PbPb at $\sqrt{s_{NN}} = 2.76$ TeV

Muon Pairs in PbPb at $\sqrt{s_{NN}} = 2.76$ TeV

Bottomonia: with 2010 data

Bottomonia: with 2011 data

Ratios not corrected for acceptance and efficiency

Y(nS) / Y(1S) Double Ratio

Separated Y(2S) and Y(3S)

- Measured Y(2S) double ratio vs. centrality
 - centrality integrated:

 $\frac{N_{\Upsilon(2S)}/N_{\Upsilon(1S)}|_{\rm PbPb}}{N_{\Upsilon(2S)}/N_{\Upsilon(1S)}|_{\rm Pp}} = 0.21 \pm 0.07 \pm 0.02$

- no strong centrality dependence
- Upper limit on Y(3S)
- centrality integrated: $\frac{N_{\Upsilon(3S)}/N_{\Upsilon(1S)}|_{\text{PbPb}}}{N_{\Upsilon(3S)}/N_{\Upsilon(1S)}|_{\text{pp}}} < 0.1 (95\% \text{ C.L.})$

CMS-HIN-11-011

Υ (1S) and Υ (2S) R_{AA}

$$R_{AA} = \frac{\mathcal{L}_{pp}}{T_{AA}N_{\rm MB}} \frac{N_{\rm PbPb}(\Upsilon(\mathrm{nS}))}{N_{pp}(\Upsilon(\mathrm{nS}))} \frac{\varepsilon_{pp}}{\varepsilon_{\rm PbPb}}$$

- In 2010 (7.28µb⁻¹):
 - only Υ(1S) R_{AA} in
 3 centrality bins
 - JHEP 1205 (2012) 063
- In 2011 (150µb⁻¹):
 - Υ(1S) R_{AA} in
 7 centrality bins
 - first results on Υ (2S) R_{AA}
 - clear suppression of $\Upsilon(2S)$
 - Y(1S) suppression consistent with excited state suppression (~50% feed down)

Comparison to RHIC

Muon Pairs in PbPb at $\sqrt{s_{NN}} = 2.76$ TeV

PbPb vs. pp at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

J/ ψ in PbPb at $\sqrt{s_{NN}} = 2.76$ TeV

- Reconstruct µ⁺µ⁻ vertex
- Simultaneous fit of µ⁺µ⁻ mass and pseudo-proper decay length

$$\ell_{J/\psi} = L_{xy} \frac{m_{J/\psi}}{p_T} \quad \mathbf{B}_{\bullet}$$

J/ψ

Open heavy-flavour: $B \rightarrow J/\psi$

- Suppression of non-prompt J/ ψ observed in PbPb
 - indication of high- p_T b-quark quenching
 - with 2011 data: will study centrality dependence

PRL 106 (2011) 212301 arXiv:1205.6334 PLB 710 (2012) 256 EPJ C 72 (2012) 1945 JHEP 1205 (2012) 063

Prompt J/ ψ at high p_T: RHIC - LHC

- Prompt J/ ψ
 - p_T > 6.5 GeV/c & |y|<2.4
 - in 0–10% centrality: suppressed by factor 5
 - in 50–100%:

suppressed by factor ~1.6

- STAR
 - p_T > 5 GeV/c & |y|<1
 - less suppression at RHIC

Prompt J/ ψ at the LHC: ALICE - CMS

JHEP 1205 (2012) 063

- Prompt J/ ψ
 - p_T > 6.5 GeV/c & |y|<2.4
 - in 0–10% centrality: suppressed by factor 5
 - in 50–100%:
 suppressed by factor ~1.6
- ALICE (inclusive J/ ψ)
 - p_T > 0 GeV/c & 2.5<y<4
 - less suppression at forward rapidity, low p_T
 - includes ~10% b-fraction:
 prompt R_{AA} could drop
 11%

J/ψ vs. rapidity

- CMS: rapidity dependence opposite to PHENIX
 but PHENIX is low p_T
- CMS measured at 1.6<|y|<2.4 also to lower p_T (p_T >3 GeV/c)
 - consistent with ALICE forward low p_T results

Prompt J/ ψ : Model Comparison

Zhao & Rapp, NPA 859 (2011) 114 + private communication

- $p_T > 6.5 \text{ GeV/c } |y| < 2.4$
- in 0–10% centrality: suppressed by factor 5
- in 50–100%:
 suppressed by factor ~1.6
- Recombination effects:
 - expected to be small at high p_T

Prompt J/ψ: CNM Effects

- Prompt J/ ψ
 - $p_T > 6.5 \text{ GeV/c:}$
 - in 0–10% centrality: suppressed by factor 5
 - in 50–100%:
 suppressed by factor ~1.6
- Cold nuclear matter effects
 - work in progress to estimate (anti)shadowing contributions
 - relatively small at high $\ensuremath{p_{\text{T}}}$

ψ (2S) in pp at \sqrt{s} = 7 TeV

- CMS measured $\psi(2S)$ cross section in pp at $\sqrt{s} = 7$ TeV
- $\psi(2S) / J/\psi$ cross-section ratio ~0.035 at p_T > 6.5 GeV/c
- Uncertainties on theory larger than experimental
 uncertainties
 Carlos Lourenco

(Tuesday, 14h15)

ψ (2S) in pp & PbPb at $\sqrt{s_{NN}}$ = 2.76 TeV

- Raw yield ratio of $\psi(2S) / J/\psi$: $R_{\psi(2S)}$
- For p_T>6.5 GeV/c and |y|<1.6:
 R_{ψ(2S)} in 0–20% PbPb ~2× smaller than in pp

CMS-HIN-12-007

ψ (2S) in pp & PbPb at $\sqrt{s_{NN}}$ = 2.76 TeV

26

$\psi(2S)$ / J/ ψ Double Ratio

• Double ratio of $[\psi(2S) / J/\psi]_{PbPb} / [\psi(2S) / J/\psi]_{pp}$

 For p_T>3 GeV/c and 1.6<|y|<2.4:
 large uncertainties on pp Indication of ψ(2S) being less suppressed than J/ψ, but need more statistics (in particular pp)! For $p_T > 6.5$ GeV/c and |y| < 1.6: $\psi(2S)$ are more suppressed than J/ψ

CMS-HIN-12-007

$\psi(2S)$ / J/ ψ Double Ratio

CMS-HIN-12-007

Summary

- First measurement of Y(2S) suppression
 - upper limit on $\Upsilon(3S)$ double ratio
 - Y(1S) R_{AA} consistent with suppression of feed down from excited states (~50%)
 - High-p_T ψ (2S) are more suppressed than high-p_T J/ ψ
 - Need more pp statistics to pin down lower-p_T double ratio T/T_c 1/(r) [fm¹]
 - Filling the thermometer
 - one peak at a time...

≤Tc

Y(1S)

χ_b(1P)

J/ψ(15) Y'(25)

χ_b'(2P) Υ''(3S) χ_c(1P) Ψ'(2S)

$\psi(2S)$ / J/ ψ Double Ratio

• Double ratio of $[\psi(2S) / J/\psi]_{PbPb} / [\psi(2S) / J/\psi]_{pp}$

- For p_T >3 GeV/c and 1.6<|y|<2.4: large uncertainties on pp Indication of ψ (2S) being less suppressed than J/ ψ
 - Significance: not more than 2σ , work is ongoing, but we need more pp!
- For p_T>6.5 GeV/c and |y|<1.6: ψ(2S) are more suppressed than J/ψ

Dimuon Acceptance

- Muons need to overcome magnetic field and energy loss in absorber
 - minimum total momentum
 p~3–5 GeV/c to reach
 muon station
- Limits J/ ψ acceptance:
 - mid-rapidity: $p_T > 6.5 \text{ GeV/c}$
 - forward: p_T >3 GeV/c
- Y acceptance:
 - $p_T > 0$ GeV/c for all rapidity

Dimuon Acceptance

- Muons need to overcome magnetic field and energy loss in absorber
 - minimum total momentum
 p~3–5 GeV/c to reach
 muon station
- Limits J/ ψ acceptance:
 - mid-rapidity: $p_T > 6.5 \text{ GeV/c}$
 - forward: p_T >3 GeV/c
- Y acceptance:
 - $p_T > 0$ GeV/c for all rapidity

Y(1S) feed down

- CDF measured direct fraction of Υ(1S) with p_T > 8 GeV/c (PRL 84 (2000) 2094):
 - (50.9 ± 8.2 (stat.) ± 9.0 (syst.))%
- S. Digal et al., PRD 64 (2001) 094015:
 - extrapolate to $p_T = 0$

state	$f_i(\bar{p}p)$ [%]
$\Upsilon(1S)$	52 ± 9
$\chi_b(1P)$	26 ± 7
$\Upsilon(2S)$	10 ± 3
$\chi_b(2P)$	10 ± 7
$\Upsilon(3S)$	2 ± 0.5
Υ	100

Prompt J/ ψ at high p_T: RHIC - LHC

• Prompt J/ ψ

- $p_{T} > 6.5 \text{ GeV/c:}$
- in 0–10% centrality: suppressed by factor 5
- in 50–100%:
 suppressed by factor ~1.6
- PHENIX
 - $-p_T > 0 \text{ GeV/c}$
 - similar suppression, though lower p_T

Bottomonia: with 2011 data

J/ψ comparison: RHIC + LHC

$J/\psi p_T$ dependence

Model:

- Strickland (PRL 107 (2011) 132301)

Other comparisons

- Rapp et al. (arXiv:1111.6537)
- Song et al. (PRC 85 (2012) 014902
- Brezinski et al. PLB 707 (2012) 534

