Small-x physics at the Large Hadron electron Collider

Nestor Armesto and Brian Cole

on behalf of LHeC working group and High Parton Density/low-x WG conveners: N. Armesto, B. Cole, P. Newman, A. Stasto

LHeC Scope

See <u>www.lhec.org.uk</u>

electrons (and positions ?) with polarization: maximum energy 50-140 GeV

on protons: maximum energy 7 Tev

on nuclei: maximum energy 2.75 TeV / A for Pb

on deuterons: maximum energy 3.5 TeV / A

LHeC physics program

- Proton structure to a few 10⁻²⁰ m:
 - \Rightarrow Q2 lever arm.
- Precision QCD& EW
- High-mass frontier
- ⇒leptoquarks, excited fermions contact interactions).
- Ultra-low x
 - ⇒access a novel regime of matter predicted by QCD.
- Precision studies of partons in nuclei
 ⇒A+A initial state

Precision standard model measurements

- Precision α_s , effective couplings, flavor dependence
- Precision Higgs measurements

Beyond SM physics

- Lepto-quarks, contact interactions, excited fermions
- R-parity violating SUSY

Precision measurements of proton structure

- HERA++ (esp. charged current measurements)
- Neutron PDFs via deuteron w/ forward proton tagging

High Parton Density

- Evolution @ low x, non-linear evolution (saturation)
- Nuclear PDFs and SIDIS
 - Improved PDFs, $g^A(x, Q^2)$ via F_L and F_2^c
 - Evolution & fragmentation of quark in nucleus

Nuclear Physics Program

QCD @ high parton density (unitarity limit), parton saturation in nucleons and nuclei

Measure the initial state leading to (strong coupled) quark gluon plasma

Study evolution of struck quark in nucleus over large range of v, Q^2

Anti-shadowing

Precision nuclear and neutron parton distributions (especially gluons) over wide kinematic range

Making the target blacker

2-pronged approach: Probing lower x at fixed Q² in e+p ⇒evolution of a single source Increasing target density in e+A ⇒overlapping many sources at fixed kinematics ... density ⇒ worth factor of 100 in x

LHeC: Ring-Ring Option

12		IR Option	1 de	egree	10 d				
20		Beams	Electrons	Protons	Electrons	Protons			
Z		Energy	$60 { m GeV}$	$7 { m TeV}$	$60~{\rm GeV}$	$7 { m TeV}$			
ER	Point 3.3	Intensity	$2~\cdot~10^{10}$	$1.7 \ \cdot \ 10^{11}$	$2~\cdot~10^{10}$	$1.7 \cdot 10^{11}$	DR N 150 33 (Baperano suppressore) 20 Electroal powering for transport General services		
U	RZ33	eta_x^*	0.4 m	$4.05 \mathrm{~m}$	0.18 m	1.8 m	(20) Safely Communications Release able (7) Optical fibers Ø 40 e		
Srt	UJ32 RE 32	eta_y^*	0.2 m	$0.97~\mathrm{m}$	$0.1 \mathrm{m}$	$0.5 \mathrm{m}$	Denerel services Phones (a) Space reserved For survey		
pde	TZ32 Point 3	ϵ_x	5 nm	$0.5 \ nm$	$5 \ nm$	$0.5 \ nm$	3) Been Loss montor		
Å		ϵ_y	$2.5 \ nm$	$0.5 \ nm$	$2.5 \ nm$	$0.5 \ nm$	Electronics Chassis (2) Protection Berviers		
γþ	<u>RE 28</u>	σ_x	45	$\mu \mathrm{m}$	30	For detailed implementation refer to DMU			
Stu		σ_y	22	$\mu \mathrm{m}$	15.	$8\mu { m m}$			
L L	UA27 Point 2 PGC2 UL 26 PM25	Cross angle	e 1 n	arad	1 n	$1 \mathrm{mrad}$			
sis	UP 25 US 25	$\xi_{bb,x}$	0.086	0.0008	0.085	0.0008			
ŏ		$\xi_{bb,y}$	0.088	0.0004	0.090	0.0004			
<u>V</u>	UI. RA RH23	Luminosity	$7.33 \cdot 10^{3}$	$s^{2} cm^{-2}s^{-1}$	$> 1.34 \cdot 10^{2}$	$33 \ cm^{-2}s^{-1}$			
Щ. Н	<u>UJ22</u>			UJ 88		20	E.BP1		
/: L		$n_{\rm b} f_0$	$N_{\rm r}(AN_{\rm Ph})$	2.6×10^{3}	$1 \text{ cm}^{-2}\text{s}^{-1}$	(Nominal Pb)			
inar)		$L_{eN} = \frac{\pi \sigma_0 \sigma_1^2}{4\pi \sqrt{\beta_a^*}}$	$L_{eN} = \frac{n_{bJ} \sigma_{e}(\pi r \rho_{bJ})}{4\pi \sqrt{\beta_{xe}^* \varepsilon_x} \sqrt{\beta_{ye}^* \varepsilon_y}} = \begin{pmatrix} 2.0 \times 10 & \text{cm}^{-1} \text{s}^{-1} \\ 4.5 \times 10^{31} \text{ cm}^{-2} \text{s}^{-1} \end{pmatrix} $ (Ultimate Pb)						
<u>.</u>	6.87 GeV						500		
Pre	PA 3.73 GeV	e[$\mathcal{D}: L_{eN} = \mathcal{A}^{\prime}$	$L_{eA} > ~ ($) ³¹ cm ⁻²	S ⁻¹⁰ 42 m 42 m			
		4 ILC RF-units, 1.28 HGz.	156 m, providing 3.13 GV	V IU GeV to LHeC		RF / Inj	jection		

Linac-ring options

Linac-ring options

LHeC	2012
DISI I;	CERN
gacz@	eport,
ıry; Bog	tudy R
elimina	esign S
Č	

 $L_{eN} = \langle$

electron beam	LR FRL	LR		
e- energy at IP[GeV]	60	140		
luminosity [10 ³² cm ⁻² s ⁻¹]	10	0.44		
polarization [%]	90	90		
bunch population [10 ⁹]	2.0	1.6		
e- bunch length [mm]	0.3	0.3		
bunch interval [ns]	50	50		
transv. emit. γε _{x,y} [mm]	0.05	0.1		
rms IP beam size σ _{x,y} [μm]	7	7		
e- IP beta funct. β* _{x,y} [m]	0.12	0.14		
full crossing angle [mrad]	0	0		
geometric reduction <i>H</i> _{hg}	0.91	0.94		
repetition rate [Hz]	N/A	10		
beam pulse length [ms]	N/A	5		
ER efficiency	94%	N/A		
average current [mA]	6.6	5.4		
tot. wall plug power[MW]	100	100		

ed out by 10 GeV beams

ERL

Large L for e^+ challenging.

Reaching low x in nuclei

• LHC p-A reach (e.g. ALICE, CMS ~ ATLAS)

Reaching low x in nuclei

Preliminary; LHeC Design Study Report, CERN 2012

LHeC will probe > 10 smaller x than p-A @ LHC
More important: test factorization with e/p-A

Low x detector requirements

Access to Q² = 1 GeV² @ low x requires scattered electron acceptance to 179°

Similarly, need 1° acceptance in outgoing proton direction to contain hadrons at high x (essential for good kinematic reconstruction)

e+A kinematics

 LHeC will be able to access x-Q² values deep into the saturation regime.

LHeC - Detector, low-Q² setup

• Plus luminosity detector, electron tagging, polarimeter, ZDC and leading proton detector.

Detector: tracking

Detector: calorimetry

Liquid Argon EM Calorimeter [accordion geometry, inside coil] Barrel: Pb, 20 X_0 , 11m³ FEC: Si -W, 30 X_0 BEC: Si -Pb, 25 X Hadronic Tile Calorimeter [modular, outside coil: flux return]

GEANT4 simulated event

Proton DIS @ LHeC

Extensive studies of discriminating power of LHeC DIS data

⇒Measurements capable of discriminating between different descriptions of F₂, F_L

 Caveat: effects of radiative corrections still being evaluated

Preliminary; LHeC Design Study Report, CERN 2012

LHeC: proton F₂ and F_L impact

• Using measured F_2 and F_L in e-p can significantly improve knowledge of gluon distribution

Preliminary; LHeC Design Study Report, CERN 2012

LHeC: nuclear DIS impact

Preliminary; LHeC Design Study Report, CERN 2012

• LHeC measurements will provide precise F₂ measurements @low x

- Image: Advantage of the second state of the
- And new measurements of F_L, F₂^c, F₂^b
- And charged-current events (flavor decomposition)

LHe

LHeC nuclear DIS impact

• LHeC measurements will dramatically reduce uncertainties on nuclear PDFs

UHO Diffractive DIS on nuclear targets

Preliminary; LHeC Design Study Report, CERN 2012

Challenging experimental problem

- Requires Monte Carlo simulation with detailed understanding of the nuclear break-up.
- For the coherent case, predictions available.

A+A initial conditions

LHeC will probe the physics of the "initial state" of heavy ion collisions down to $x < 10^{-6}$ with Q² > ~ 1 GeV²

LHeC timeline (2)

time line of CERN HEP projects

 From 2012 Chamonix LHC Performance workshop summary (Rossi)

- See also NuPeCC long range plan

LHeC timeline

Year	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
	TDR												
	RF Pr devel	ototype opment	t										
				RF Prod	duction	& Tes	t stand	operat	tion				
			Magne series	t pre-									
					Magn	et Proc	duction	& test	ing				
				Legal prepar	ation								
						Civil e	nginee	ring					
									Infras	truc.			
										Instal	lation		
												Opera	tion

Goal: start operation by 2023 [LHC high lumi]

- ⇒The major accelerator and detector technologies exist
- \Rightarrow Cost is modest in major HEP project terms

• Steps:

- Conceptual Design Report, 2012
- Evaluation within CERN / European PP/NP strategy
- If positive, move towards a TDR 2013/14

- Many issues remain open about precision perturbative QCD in nuclei and at small-x.
 - ⇒Lack of understanding limits our physics program
- e+p/A collider offers huge possibilities for QCD:
 - ⇒Improved proton and nucleus PDFs
 - ⇒Hadron/nuclear structure.
 - \Rightarrow Factorization checks.
 - \Rightarrow New (non-linear) regime at high energy/small x.
 - ⇒Questions we don't yet know (how) to ask
- e+A: amplifier of density effects,
 - implications for A+A initial state & evolution to sQGP
 - complementary to p+A@LHC.
- LHeC@CERN:

⇒new facility for e+p/e+A at Ecm~1-2 TeV under design.

Summary (2)

UBec Data and PDFs, non-linearities?

J. Rojo, from CERN HPD workshop

 Can we see failure of linear evolution (including low-x resummation) with e-p data from LHeC?

- NNPDF fits to pseudo-data w/ saturation (here FS04)
- Compare extracted PDFs, deviations indicate failure of linear evolution
- \Rightarrow Need F_L to see significant

UBec Data and PDFs, non-linearities?

J. Rojo, from CERN HPD workshop

Pseudo-data from AAMS09 (BK + running coupling)

Similar conclusions w/ more modern saturation

Pseudo-data from AAMS09 (BK + running coupling)

Nuclear PDF, LHeC

N. Armesto, CERN HPD workshop

Nuclear pseudo-data for a given set of assumptions re: nuclear running

- Excellent statistics for F_2 , not so good for F_L
- ⇒But, sensitive to assumptions re: nuclear operation
- $-F_L$ still as necessary with nuclei?

LHO Inclusive Diffraction @ LHeC

Diffraction at LHeC: new possibilities

- Studies with I degree acceptance,
- Diffractive-PDFs
- Factorization in much bigger range
- Diffractive masses $M_X \sim 100 {
 m GeV}$ with $x_{I\!\!P} = 0.01$
- X can include W,Z,b

Forshaw, Marquet, Newman

Simulated diffractive data available

• From talk by P. Newman Divonne 2008