Heavy flavour production in pp and AA collisions at the LHC

Marco Monteno INFN Torino

work done in collaboration with:
W. M. Alberico, A. Molinari (Dip. Fisica Univ. di Torino),
A. Beraudo (Centro Studi e Ricerche "E. Fermi" and CERN),
A. De Pace, M. Nardi and F. Prino (INFN Torino)

Hard Probes 2012, 27-31 May 2012

Outline

- Heavy quark production in pQCD: problems and theoretical tools
- Our approach: a Montecarlo setup with a pQCD event generator (POWHEG, within the POWHEG-BOX set-up) followed by an implementation of Langevin diffusion of heavy quarks in QGP.
- Further refinements (especially in the pp sector) with respect to version of QM2011.
- Predictions for pp collisions at LHC: $\sqrt{s}=7$ TeV and $\sqrt{s}=2.76$ TeV
- Predictions for Pb-Pb collisions at LHC: $\sqrt{s}=2.76$ TeV/n

Heavy flavour production in pQCD

The large mass M of c and b quarks makes possible a pQCD calculation of $Q\overline{Q}$ production:

- it sets a minimal "off-shellness" of the intermediate propagators (diagrams don't explode);
- it sets a hard scale for the evaluation of αs(μ) (fastening of the convergence of the perturbative series);
- it prevents collinear singularities (suppression of emission of smallangle gluon, the so-called dead cone effect)

Both the total cross section $\sigma_{Q\overline{Q}}^{tot}$ and the invariant single-particle spectrum $E(d\sigma_Q/d^3p)$ are well-defined quantities which can be calculated in pQCD.

Hard Probes 2012, 27-31 May 2012

Next to Leading Order (NLO) processes

Real Emission Diagrams

- Calculation at NLO accuracy gives the $O(\alpha_s^3)$ result for $\sigma_{Q\overline{Q}}^{tot}$ and $E(d\sigma_Q/d^3p)$
- It has being implemented for many years in several numerical codes (as MNR and others) and Montecarlo event generators (as MC@NLO, POWHEG, etc)
- However... large terms of collinear origin ~ α_s ln(p_T/M)
 can become large for (p_T>>m)
- Different schemes for *resummation* of these logs are possible

Some examples of pQCD tools for heavy flavour studies

- Fixed-order codes: MNR (calculation) or MC@NLO, POWHEG (MC generators).
- FONLL: fixed-order (NLO) calculation of hard processes + next-to-leading log resummation (with implementation also of non-perturbative input to model fragmentation and decays.
- alternative schemes, e.g. GM-VFNS

Montecarlo codes provide the advantage to save maximum information about the event (i.e. correlations in azimuth or rapidity between $Q\overline{Q}$)

POWHEG is a code interfaced to Shower Monte Carlo programs (like HERWIG, PYTHIA) that describe at the Leading Log accuracy how initial and final states partons evolve according to DGLAP.

Hard Probes 2012, 27-31 May 2012

Our approach: a multi-step simulation of heavy quark production in pp and AA

- Initial generation of QQ pairs with POWHEG (pQCD@NLO), with the addition a posteriori of an intrinsic k_T kick; added Parton Shower (PYTHIA)
- for AA collisions: EPS09 nuclear corrections to parton distributions (both at NLO accuracy) have been implemented
- Heavy quark position are distributed in the transverse plane according to nuclear geometry (Glauber); Cronin effect (k_T broadening) included.
- Langevin evolution in the QGP: at each step u^μ(x) and T(x) are given by hydro codes, and used to evaluate transport coefficients of the expanding fluid and to update position and 4-momentum of the heavy quark.
- At T_c HQ are made hadronize. Fragmentation is performed by sampling hadron species from experimental branching-fractions, and by sampling momentum from appropriate parametrizations of fragmentation functions.
- Finally, heavy quark hadrons are made decay into electrons, by using the PYTHIA decayer with branching-ratios from Particle Data Group review.

Hard Probes 2012, 27-31 May 2012

Marco Monteno - INFN Torino

Our approach: a multi-step simulation of heavy quark production in pp and AA

- Initial generation of QQ pairs with POWHEG (pQCD@NLO), with NEV addition a posteriori of an intrinsic k_T kick, added Parton Shower (PYTHIA)
- for AA collisions: EPS09 nuclear corrections to parton distributions (both at NLO accuracy) have been implemented
- Heavy quark position are distributed in the transverse plane according to nuclear geometry (Glauber); Cronin effect (k_T broadening) included.
- Langevin evolution in the QGP: at each step u^μ(x) and T(x) are given by hydro codes, and used to evaluate transport coefficients of the expanding fluid and to update position and 4-momentum of the heavy quark.
- At T_c HQ are made hadronize. Fragmentation is performed by sampling hadron species from experimental branching-fractions, and by sampling momentum from appropriate parametrizations of fragmentation functions.
- Finally, heavy quark hadrons are made decay into electrons, by using the PYTHIA decayer with branching-ratios from Particle Data Group review.

Hard Probes 2012, 27-31 May 2012

Marco Monteno - INFN Torino

Our approach: a multi-step simulation of heavy quark production in pp and AA

- Initial generation of QQ pairs with POWHEG (pQCD@NLO), with NEV addition a posteriori of an intrinsic k_T kick (added Parton Shower (PYTHIA))
- for AA collisions: EPS09 nuclear corrections to parton distributions (both at NLO accuracy) have been implemented
- Heavy quark position are distributed in the transverse plane according to nuclear geometry (Glauber); Cronin effect (k_T broadening) included.
- Langevin evolution in the QGP: at each step u^µ(x) and T(x) are given by hydro codes, and used to evaluate transport coefficients of the expanding fluid and to update position and 4-momentum of the heavy quark.
- At T_c HQ are made hadronize. Fragmentation is performed by sampling hadron species from experimental branching-fractions, and by sampling momentum from appropriate parametrizations of fragmentation functions.
- Finally, heavy quark hadrons are made decay into electrons, by using the PYTHIA decayer with branching-ratios from Particle Data Group review.

Hard Probes 2012, 27-31 May 2012

Marco Monteno - INFN Torino

Relativistic Langevin equation

$$\frac{\Delta p^{i}}{\Delta t} = -\underbrace{\eta_{D}(p)p^{i}}_{\text{determ.}} + \underbrace{\xi^{i}(t)}_{\text{stochastic}}$$

with the properties of the noise encoded in

 $\langle \xi^{i}(\boldsymbol{p}_{t})\xi^{j}(\boldsymbol{p}_{t'})\rangle = \boldsymbol{b}^{ij}(\boldsymbol{p}_{t})\frac{\delta_{tt'}}{\Delta t} \qquad \boldsymbol{b}^{ij}(\boldsymbol{p}) \equiv \kappa_{L}(p)\hat{p}^{i}\hat{p}^{j} + \kappa_{T}(p)(\delta^{ij} - \hat{p}^{i}\hat{p}^{j})$

Transport coefficients to be calculated (HTL pQCD):

- momentum diffusion $\kappa_T \equiv \frac{1}{2} \frac{\langle \Delta p_T^2 \rangle}{\Delta t}$ and $\kappa_L \equiv \frac{\langle \Delta p_L^2 \rangle}{\Delta t}$
- friction term (dependent on the discretization scheme!):

$$\eta_D^{\text{Ito}}(p) = \frac{\kappa_L(p)}{2TE_p} - \frac{1}{E_p^2} \left[(1-v^2) \frac{\partial \kappa_L(p)}{\partial v^2} + \frac{d-1}{2} \frac{\kappa_L(p) - \kappa_T(p)}{v^2} \right]$$

fixed in order to insure approach to equilibrium (Einstein relation): Langevin \Leftrightarrow Fokker Planck with steady solution exp(-Ep/T)

Hard Probes 2012, 27-31 May 2012

Marco Monteno - INFN Torino

Hydrodynamics

The fields $u^{\mu}(x)$ and T(x) are taken from the output of two longitudinally boost-invariant ("Hubble-law" longitudinal expansion vz =z/t) hydro codes ^(1,2):

$$\begin{aligned} x^{\mu} &= (\tau \cosh \eta, \boldsymbol{r}_{\perp}, \tau \sinh \eta) \quad \text{with} \quad \tau \equiv \sqrt{t^2 - z^2} \\ u^{\mu} &= \bar{\gamma}_{\perp} (\cosh \eta, \bar{\boldsymbol{v}}_{\perp}, \sinh \eta) \quad \text{with} \quad \bar{\gamma} \equiv \frac{1}{\sqrt{1 - \bar{\boldsymbol{v}}_{\perp}^2}} \end{aligned}$$

- $u^{\mu(x)}$ used to perform the update each time in the fluid rest-frame
- T(x) allows to fix at each step the value of the transport coefficients.

[1] P.F. Kolb, J. Sollfrank and U. Heinz, Phys. Rev. C 62 (2000) 054909
 [2] P. Romatschke and U. Romatschke, Phys. Rev. Lett. 99 (2007) 172301

Hard Probes 2012, 27-31 May 2012

Marco Monteno - INFN Torino

First results (released at QM2011)

- <u>but...</u>
- obsolete FF (Peterson)
- output files have poor information for more refined analysis (i.e. rapidity or angular correlations)
- needed study of systematic uncertainties

Hard Probes 2012, 27-31 May 2012

Marco Monteno - INFN Torino

Functional forms from Braaten et al. arXiv:hep-ph/9409316 with different functional forms for pseudoscalar and vector mesons:

$$D_{Q \to P}(z) = N \frac{rz(1-z)^2}{(1-(1-r)z)^6} \left[6 - 18(1-2r)z + (21 - 74r + 68r^2)z^2 -2(1-r)(6 - 19r + 18r^2)z^3 + 3(1-r)^2(1-2r+2r^2)z^4 \right], \quad (31)$$

$$D_{Q \to V}(z) = 3N \frac{rz(1-z)^2}{(1-(1-r)z)^6} \left[2 - 2(3-2r)z + 3(3-2r+4r^2)z^2 - 2(1-r)(4-r+2r^2)z^3 + (1-r)^2(3-2r+2r^2)z^4 \right]. \quad (32)$$

One parameter: r (but different authors adopt different values)

- in Braaten et al: r=(m_H-m_Q)/m_H corresponding to the contribution of light quark to hadron mass (e.g. with m_Q=1.5 GeV, r=0.2 for D⁰ and D⁺)
- In FONLL (arXiv:hep-ph/0502203 and arXiv:hep-ph/0306212): r=0.1 for m_c=1.5 GeV (fitted on D* ALEPH data)

Which is the effect on syst.uncertainty of calculations?

Comparison between different FF (charm)

Hard Probes 2012, 27-31 May 2012

Marco Monteno - INFN Torino

Comparison between different FF (bottom)

Kartelishvili et al: FONLL pQCD: Braaten et al

Hard Probes 2012, 27-31 May 2012

Marco Monteno - INFN Torino

Some predictions for pp collisions at the LHC

p_T differential cross-sections

- prompt D, D* mesons ALICE |y| < 0.5
- B mesons CMS |y| < 2.2 2.4

Hard Probes 2012, 27-31 May 2012

p_T spectra of D mesons in ALICE: $\sqrt{s} = 7$ TeV

D⁺ in pp at LHC (\star{s=7} TeV, lyl<0.5): POWHEG-BOX+PYTHIA Parton Shower

p_T spectra of D mesons in ALICE: $\sqrt{s} = 2.76$ TeV

p_T spectra of B mesons in CMS $\sqrt{s} = 7$ TeV

Predictions for PbPb collisions at the LHC: $\sqrt{s} = 2.76$ TeV/nucleon

Nuclear modification factors RAA

• R_{AA} D, D* mesons in ALICE |y|<0.5 centr. (0-20)%

Elliptic flow v₂

• v₂ of D mesons in ALICE |y|<0.5, centr. (30-50)%

Hard Probes 2012, 27-31 May 2012

Marco Monteno - INFN Torino

R_{AA} of **D** mesons in ALICE

Hard Probes 2012, 27-31 May 2012

Marco Monteno - INFN Torino

R_{AA} of **D** mesons in ALICE: systematics

Comparison of changes in R_{AA} with/without PYTHIA Parton Shower and for changes of the r parameter in the charm Braaten fragmentation function

Hard Probes 2012, 27-31 May 2012

Elliptic flow v₂ in ALICE

Hard Probes 2012, 27-31 May 2012

v₂ of D⁰ mesons in ALICE: systematics

Comparison of changes in v_2 (D⁰) with/without PYTHIA Parton Shower and for changes of the r parameter in the charm Braaten fragmentation function

Hard Probes 2012, 27-31 May 2012

Summary

- Improvements to our simulation of HQ production in pp collisions have been implemented, by interfacing the most recent version of POWHEG with PYTHIA (to perform Parton Showering).
- Systematic studies on the effect of an intrinsic k_T, or a change in FF have been performed.
- First check against data from LHC experiments on pp collisions at \sqrt{s} = 7 TeV show a good level of agreement, taking into account the different sources of theoretical uncertainties. Our setup provides a solid benchmark to be used as a reference for results obtained in nucleus-nucleus collisions.
- Preliminary comparisons with ALICE data show a good agreement with the pattern of R_{AA} in central collisions, whereas the elliptic flow v₂ in semi-peripheral collisions appears to be underestimated.

BACKUP SLIDES

Hard Probes 2012, 27-31 May 2012

Marco Monteno - INFN Torino

giovedì 31 maggio 2012

23

Evaluation of transport coefficients $K_T/L(p)$

The interaction rate (from the squared matrix element of the process) must be weighted by the squared transverse/longitudinal exchanged momentum.

intermediate cutoff $|t|^* \sim m_D^2$ introduced to separate the contributions of

- soft collisions (|t| < |t|*): Hard Thermal Loop (HTL) approximation in a weak-coupling scenario, with the running coupling costant g(μ) taken at a scale μ ~ T, the Debye screening mass m_D preventing infrared divergencies.
- hard collisions (|t| > |t|*): kinetic pQCD calculation

Two calculations, $\mu \sim T$ as for the soft component (HTLI) with $g(\mu)$ evaluated at:

$$\mu = |t| = -Q^2$$
 (HTL2)

Effect of intrinsic k_T

WA75 (and WA92)

- Azimuthal correlations: $dN/d\Delta\phi$ with $\Delta\phi \equiv \phi_Q \phi_{\overline{Q}}$ Pair transverse momentum: $dN/d(p_T^{Q\overline{Q}})^2$ with $P_T^{Q\overline{Q}} \equiv P_T^Q + P_T^{\overline{Q}}$
- LO: $\Delta \phi = \pi$ $P_T^{QQ} = \mathbf{0}$ $Q \text{ and } \overline{Q}$ back-to-back **NLO:** $\Delta \phi = \pi + \mathcal{O}(\alpha_s)$ $P_T^{\overline{Q}\overline{Q}} = \mathcal{O}(\alpha_s)$ $\overline{Q}\overline{Q}g$ final-state

Intrinsic k_T looks necessary to reproduce the data! We can check what happens in our simulations with/without it.

Hard Probes 2012, 27-31 May 2012

Marco Monteno - INFN Torino