(some selected) Recent Developments in Lattice Studies for Quarkonia

Olaf Kaczmarek

University of Bielefeld

Hard Probes 2012 Cagliari 27.05.-01.06.2012

Motivation - Quarkonium in Heavy Ion Collisions

Charmonium+Bottmonium is produced (mainly) in the early stage of the collision

Depending on the Dissociation Temperature

- remain as bound states in the whole evolution
- release their constituents in the plasma

Transport Coefficients are important ingredients into hydro models for the evolution of the system.

Usually determined by matching to experiment (see right plot)

here: Heavy Quark Diffusion Constant D

also: Electrical conductivity σ (light quarks)

Need to be determined from QCD using first principle lattice calculations!

Vector correlation functions at high temperature

$$G(\tau, \vec{p}, T) = \int_{0}^{\infty} \frac{\mathrm{d}\omega}{2\pi} \rho(\omega, \vec{p}, T) K(\tau, \omega, T) \qquad K(\tau, \omega, T) = \frac{\cosh\left(\omega(\tau - \frac{1}{2T})\right)}{\sinh\left(\frac{\omega}{2T}\right)}$$

Lattice observables:

$$G_{\mu\nu}(au, \vec{x}) = \langle J_{\mu}(au, \vec{x}) J_{\nu}^{\dagger}(0, \vec{0}) \rangle$$

$$\begin{array}{c|c} & \mathbf{q} \\ \Gamma_{\mathbf{H}} & \mathbf{F}_{\mathbf{H}} \\ (0,0) & \mathbf{\bar{q}} \end{array} \begin{array}{c} & \Gamma_{\mathbf{H}} \\ (\tau,\mathbf{X}) \end{array} \end{array}$$

$$J_{\mu}(\tau, \vec{x}) = 2\kappa Z_{V} \bar{\psi}(\tau, \vec{x}) \Gamma_{\mu} \psi(\tau, \vec{x}) \qquad \text{local, non-conserved current,} \\ \text{needs to be renormalized} \\ G_{\mu\nu}(\tau, \vec{p}) = \sum_{\vec{x}} G_{\mu\nu}(\tau, \vec{x}) e^{i\vec{p}\vec{x}} \qquad \text{only } \vec{p} = 0 \text{ used here}$$

How to extract spectral properties from correlation functions?

Spectral functions at high temperature

Free theory (massless case):

free non-interacting vector spectral function (infinite temperature):

$$\rho_{00}^{free}(\omega) = 2\pi T^2 \omega \delta(\omega)$$

$$\rho_{ii}^{free}(\omega) = 2\pi T^2 \omega \delta(\omega) + \frac{3}{2\pi} \omega^2 \tanh(\omega/4T)$$

 δ -functions exactly cancel in $\rho_V(\omega)$ =- $\rho_{oo}(\omega)$ + $\rho_{ii}(\omega)$

Free theory (massless case):

free non-interacting vector spectral function (infinite temperature):

$$\rho_{00}^{free}(\omega) = 2\pi T^2 \omega \delta(\omega)$$

$$\rho_{ii}^{free}(\omega) = 2\pi T^2 \omega \delta(\omega) + \frac{3}{2\pi} \omega^2 \tanh(\omega/4T)$$

 δ -functions exactly cancel in $\rho_V(\omega)$ =- $\rho_{oo}(\omega)$ + $\rho_{ii}(\omega)$

With interactions (but without bound states):

works fine for light quarks at 1.5 Tc

["Thermal dilepton rate and electrical conductivity...", H.T.-Ding, OK et al., PRD83 (2011) 034504]

Light Quarks - Vector Correlation Function – continuum extrapolation

Use our Ansatz for the spectral function

["Thermal dilepton rate and electrical conductivity...", H.T.-Ding, OK et al., PRD83 (2011) 034504]

$$\rho_{00}(\omega) = 2\pi \chi_q \omega \delta(\omega)$$

$$\rho_{ii}(\omega) = 2\chi_q c_{BW} \frac{\omega \Gamma/2}{\omega^2 + (\Gamma/2)^2} + \frac{3}{2\pi} (1+\kappa) \omega^2 \tanh(\omega/4T)$$

and fit to the continuum extrapolated values

 $\frac{\mathbf{G_V}(\tau,\mathbf{T})}{\bar{\mathbf{G}}_{\mathbf{00}}\mathbf{G_V^{free}}(\tau,\mathbf{T})} \ \& \ \mathbf{G_V^{(2)}}$

Light Quarks - Spectral function and electrical conductivity

Use our Ansatz for the spectral function

["Thermal dilepton rate and electrical conductivity...", H.T.-Ding, OK et al., PRD83 (2011) 034504]

Analysis of the

$$\rho_{00}(\omega) = 2\pi \chi_q \omega \delta(\omega)$$

$$\rho_{ii}(\omega) = 2\chi_q c_{BW} \frac{\omega \Gamma/2}{\omega^2 + (\Gamma/2)^2} + \frac{3}{2\pi} (1+\kappa) \omega^2 \tanh(\omega/4T) \times \Theta(\omega_0, \Delta_\omega)$$

Light Quarks - Dilepton rates and electrical conductivity

["Thermal dilepton rate and electrical conductivity...", H.T.-Ding, OK et al., PRD83 (2011) 034504]

Dileptonrate directly related to vector spectral function:

+ zero-mode contribution at ω =0: $\rho(\omega) = 2\pi \chi_{00} \ \omega \delta(\omega)$

- + zero-mode contribution at ω =0: $\rho(\omega) = 2\pi\chi_{00} \ \omega\delta(\omega)$ + transport peak at small ω : $\rho(\omega \ll T) \simeq 2\chi_{00} \frac{T}{M} \frac{\omega\eta}{\omega^2 + \eta^2}$, $\eta = 0$

+ zero-mode contribution at ω =0: $\rho(\omega) = 2\pi\chi_{00} \ \omega\delta(\omega)$ + transport peak at small ω : $\rho(\omega \ll T) = 2\chi_{00} \frac{T}{M} \frac{\omega\eta}{\omega^2 + \eta^2}, \quad \eta = 0$

+ zero-mode contribution at ω =0: $\rho(\omega) = 2\pi\chi_{00} \ \omega\delta(\omega)$ + transport peak at small ω : $\rho(\omega \ll T) = 2\chi_{00} \frac{T}{M} \frac{\omega\eta}{\omega^2 + \eta^2}, \quad \eta = 0$

+ zero-mode contribution at ω =0: $\rho(\omega) = 2\pi\chi_{00} \ \omega\delta(\omega)$ + transport peak at small ω : $\rho(\omega \ll T) = 2\chi_{00} \frac{T}{M} \frac{\omega\eta}{\omega^2 + \eta^2}, \qquad \eta = \frac{T}{MD}$

+ zero-mode contribution at ω =0: $\rho(\omega) = 2\pi\chi_{00} \ \omega\delta(\omega)$ + transport peak at small ω : $\rho(\omega \ll T) = 2\chi_{00} \frac{T}{M} \frac{\omega\eta}{\omega^2 + \eta^2}, \quad \eta =$

Spatial Correlation Function and Screening Masses

Correlation functions along the spatial direction

$$G(z,T) = \int dx dy \int_0^{1/T} d\tau \langle J(x,y,z,\tau) J(0,0,0,0) \rangle$$

are related to the meson spectral function at non-zero spatial momentum

$$G(\mathbf{z},T) = \int_{-\infty}^{\infty} dp_z e^{ip_z z} \int_{0}^{\infty} d\omega \frac{\sigma(\omega, \mathbf{p}_z, T)}{\omega}$$

exponential decay defines screening mass $\mathbf{M}_{\mathsf{scr}}$:

$$egin{array}{cl} \longrightarrow & \mathbf{e}^{-\mathbf{M_{scr}z}} \ z \gg 1/T & \mathbf{e}^{-\mathbf{M_{scr}z}} \end{array}$$

bound state contribution

$$\sigma(\omega, p_z, T) \sim \delta(\omega^2 - p_z^2 - M^2)$$

 $M_{scr} = M \longrightarrow$

indications for medium

high-T limit (non-interacting free limit)

$$\sigma(\omega, p_z, T) \sim \sigma_{free}(\omega, p_z, T)$$

$$-M_{scr} = 2\sqrt{(\pi T)^2 + m_c^2}$$

Spatial Correlation Function and Screening Masses

["Signatures of charmonium modification in spatial correlation functions", F.Karsch, E.Laermann, S.Mukherjee, P.Petreczky, (2012) arXiv:1203.3770]

2+1 flavor QCD using p4-improved staggered action

 $32^3 \times N_t$ with N_t=6,8,12 and 32

physical m_s and m_l=ms/10 (m $_{\pi} \simeq 220 \text{ MeV}$)

Spatial Correlation Function and Screening Masses

 $M_{scr} = M$

screening masses for bound states insensitive to boundary conditions due to bosonic nature of the basic degrees of freedom

"... the change in the behavior of the charmonium screening masses around $T=1.5T_c$ is likely due to the melting of the meson states."

["Signatures of charmonium modification in spatial correlation functions", F.Karsch, E.Laermann, S.Mukherjee, P.Petreczky (2012) arXiv:1203.3770]

Vector correlation and spectral function at finite temperature

$$G(au,ec p,T) = \int\limits_{0}^{\infty} rac{\mathrm{d}\omega}{2\pi}
ho(\omega,ec p,T) K(au,\omega,T)$$

$$K(\tau, \omega, T) = \frac{\cosh\left(\omega(\tau - \frac{1}{2T})\right)}{\sinh\left(\frac{\omega}{2T}\right)}$$

Lattice observables:

$$G_{\mu\nu}(\tau,\vec{x}) = \langle J_{\mu}(\tau,\vec{x})J_{\nu}^{\dagger}(0,\vec{0})\rangle$$

 \vec{x}

$$J_{\mu}(\tau, \vec{x}) = 2\kappa Z_V \bar{\psi}(\tau, \vec{x}) \Gamma_{\mu} \psi(\tau, \vec{x}) \qquad \text{local, non-conserved current,} \\ \text{needs to be renormalized} \\ G_{\mu\nu}(\tau, \vec{p}) = \sum G_{\mu\nu}(\tau, \vec{x}) e^{i\vec{p}\vec{x}} \qquad \text{only } \vec{p} = 0 \text{ used here}$$

[H.T.Ding, OK et al., arXiv:1204.4945]

Quenched SU(3) gauge configurations (separated by 500 updates) at 4 temperatures

Lattice size
$$N_{\sigma}^{3} N_{\tau}$$
 with $N_{\sigma} = 128$
 $N_{\tau} = 16, 24, 32, 48, 96$

Non-perturbatively O(a) clover improved Wilson fermions

Non-perturbative renormalization constants

Quark masses close to charm quark mass

		Mass in GeV		
β	J/ψ	η_c	Xcl	χ
6.872	3.1127(6)	3.048(2)	3.624(36)	3.540(25)
7.457	3.147(1)(25)	3.082(2)(21)	3.574(8)	3.486(4)
7.793	3.472(2)(114)	3.341(2)(104)	4.02(2)(23)	4.52(2)(37)

Charmonium Correlators vs Reconstructed Correlators

$$G_{rec}(\tau, T) = \int \sigma_0(\omega, 0.75T_c) K(\omega, \tau, T)$$
$$G_{\mu\mu}(\tau, T) = G_{ii}(\tau, T) + G_{00}(\tau, T)$$

- main T-effect due to zero-mode contribution
- well described by small ω -part of $\sigma_T(\omega, \mathsf{T})$
- explains the rise in the vector channel
- no zero-mode contribution in PS-channel (similar to discussions by Umeda, Petreczky)

Charmonium Correlators vs Reconstructed Correlators

$$G_{rec}(\tau, T) = \int \sigma_0(\omega, 0.75T_c) K(\omega, \tau, T)$$
$$G_{\mu\mu}(\tau, T) = G_{ii}(\tau, T) + G_{00}(\tau, T)$$

- main T-effect due to zero-mode contribution
- effectively removed by diff/sub correlators
- almost constant small- ω contribution
- similar T-dependence in PS and V channel

in the large frequency part of spectral fct.

 $\begin{array}{lll} G_{diff}(\tau,T) &=& G(\tau,T) - G(\tau+1,T) \\ G_{sub} \; (\tau,T) &=& G(\tau,T) - G(\tau=N_t/2,T) \end{array}$

Charmonium Correlators vs Reconstructed Correlators

negative difference for all T

- indications for thermal modifications in the bound state frequency region
- remember: no transport contribution in this channel

- positive diff. due to small- ω contr.
- positive slope indicates modifications in the bound state frequency region
- remember: small- ω contribution determines transport coefficient

First estimate from fit to vector channel: $2\pi T D \approx 0.6 - 3.4$

Charmonium Spectral function

[H.T.Ding, OK et al., arXiv:1204.4945]

from sophisticated Maximum Entropy Method analysis:

statistical error band from Jackknife analysis

no clear signal for bound states above 1.46 T_c

study of the interesting region closer to T_c on the way!

Charmonium Spectral function

[H.T.Ding, OK et al., arXiv:1204.4945]

from sophisticated Maximum Entropy Method analysis:

statistical error band from Jackknife analysis

no clear signal for bound states above 1.46 T_c

study of the interesting region closer to T_c on the way!

Charmonium Spectral function – Transport Peak

[H.T.Ding, OK et al., arXiv:1204.4945]

Perturbative estimate ($\alpha_s \sim 0.2$, g ~ 1.6):

LO: $2\pi TD \simeq 71.2$ NLO: $2\pi TD \simeq 8.4$ [Moore&Teaney, PRD71(2005)064904, Caron-Huot&Moore, PRL100(2008)052301] Strong coupling limit:

 $2\pi TD = 1$

[Kovtun, Son & Starinets, JHEP 0310(2004)064]

[G.Aarts et al., JHEP11(2011)103]

In non-relativistic QCD the Lagrangian is expanded in terms of $v = |\mathbf{p}|/M$

$$\mathcal{L} = \mathcal{L}_0 + \delta \mathcal{L}$$

with

$$\mathcal{L}_0 = \psi^{\dagger} \left(D_{\tau} - \frac{\mathbf{D}^2}{2M} \right) \psi + \chi^{\dagger} \left(D_{\tau} + \frac{\mathbf{D}^2}{2M} \right) \chi$$

and

$$\begin{split} \delta \mathcal{L} &= -\frac{c_1}{8M^3} \left[\psi^{\dagger} (\mathbf{D}^2)^2 \psi - \chi^{\dagger} (\mathbf{D}^2)^2 \chi \right] \\ &+ c_2 \frac{ig}{8M^2} \left[\psi^{\dagger} \left(\mathbf{D} \cdot \mathbf{E} - \mathbf{E} \cdot \mathbf{D} \right) \psi + \chi^{\dagger} \left(\mathbf{D} \cdot \mathbf{E} - \mathbf{E} \cdot \mathbf{D} \right) \chi \right] \\ &- c_3 \frac{g}{8M^2} \left[\psi^{\dagger} \boldsymbol{\sigma} \cdot \left(\mathbf{D} \times \mathbf{E} - \mathbf{E} \times \mathbf{D} \right) \psi + \chi^{\dagger} \boldsymbol{\sigma} \cdot \left(\mathbf{D} \times \mathbf{E} - \mathbf{E} \times \mathbf{D} \right) \chi \right] \\ &- c_4 \frac{g}{2M} \left[\psi^{\dagger} \boldsymbol{\sigma} \cdot \mathbf{B} \psi - \chi^{\dagger} \boldsymbol{\sigma} \cdot \mathbf{B} \chi \right] \end{split}$$

which is correct up to order O(v^4) [G.T.Bodwin,E.Braaten,G.P.Lepage, PRD 51 (1995) 1125]

correlation function calculated as an initial value problem \rightarrow no costly matrix inversion no restriction by thermal boundary conditions

N_s	N_{τ}	T(MeV)	T/T_c	$N_{\rm cfg}$
12	80	90	0.42	250
12	32	230	1.05	1000
12	28	263	1.20	1000
12	24	306	1.40	500
12	20	368	1.68	1000
12	18	408	1.86	1000
12	16	458	2.09	1000

gauge configurations from $n_f=2$ dynamical Wilson fermion action

 $\begin{array}{ll} a_s &\simeq 0.162 \text{ fm} \\ 1/a_t \simeq 7.35 \text{ GeV} \\ a_s/a_{\tau} \mbox{=} 6 \mbox{ anisotropic lattice} \end{array}$

[G.Aarts et al., JHEP11(2011)103]

Kernel is T-independent, contributions at ω < 2M absent

no small- ω contribution \rightarrow no information on transport properties

$$G(\tau) = \int_{-2M}^{\infty} \frac{d\omega'}{2\pi} \exp(-\omega'\tau)\rho(\omega') \quad , \quad \omega' = \omega - 2M$$

[G.Aarts et al., JHEP11(2011)103]

Kernel is T-independent, contributions at ω < 2M absent

no small- ω contribution \rightarrow no information on transport properties

$$G(\tau) = \int_{-2M}^{\infty} \frac{d\omega'}{2\pi} \exp(-\omega'\tau)\rho(\omega') \quad , \quad \omega' = \omega - 2M$$

Lattice cut-off effects – free spectral functions

[G.Aarts et al., JHEP11(2011)103]

gauge configurations from $n_f=2$ dynamical Wilson fermion action

 $a_{s} \simeq 0.162 \text{ fm}$ 1/ $a_{t} \simeq 7.35 \text{ GeV}$

[H.T.Ding, OK et al., arXiv:1204.4945]

gauge configurations from quenched action

 $\begin{array}{ll} a &\simeq 0.01 \text{ fm} \\ 1/a \simeq 19 \text{ GeV} \end{array}$

cut-off effects and energy resolution determined by spatial lattice spacingno continuum limit in NRQCD, $a_s M \gg 1$ continuum limit straight forward, but expensiveonly small energy region accessibletransport properties accessible

[see also F.Karsch et al., PRD68 (2003) 014504]

[A.Francis,OK,M.Laine,J.Langelage, arXiv:1109.3941]

Heavy Quark Effective Theory (HQET) in the large quark mass limit

leads to a (pure gluonic) "color-electric correlator"

[J.Casalderrey-Solana, D.Teaney, PRD74(2006)085012, S.Caron-Huot, M.Laine, G.D. Moore, JHEP04(2009)053]

Heavy quark (momentum) diffusion:

$$\kappa = \lim_{\omega \to 0} \frac{2T\rho_{\rm E}(\omega)}{\omega}$$
 , $D = \frac{2T^2}{\kappa}$

Heavy Quark Momentum Diffusion Constant

[A.Francis,OK,M.Laine,J.Langelage, arXiv:1109.3941]

due to the gluonic nature of the operator, signal is extremely noisy

 \rightarrow multilevel combined with link-integration techniques used to improve the signal

 \rightarrow tree-level improvement (right figure) to reduce discretization effects

[similar studies by H.B.Meyer, New J.Phys.13 (2011) 035008 and D.Banerjee, S.Datta, R.Gavai, P.Majumdar, PRD85(2012)014510]

Heavy Quark Momentum Diffusion Constant

[A.Francis,OK,M.Laine,J.Langelage, arXiv:1109.3941]

Model spectral function: transport contribution + NLO [Y.Burnier et al. JHEP 1008 (2010) 094)]

 $\rho_{\text{model}}(\omega) \equiv \max\left\{\rho_{\text{NLO}}(\omega), \frac{\omega\kappa}{2T}\right\}$ $G_{\text{model}}(\tau) \equiv \int_{0}^{\infty} \frac{\mathrm{d}\omega}{\pi} \rho_{\text{model}}(\omega) \frac{\cosh\left(\frac{1}{2} - \tau T\right)\frac{\omega}{T}}{\sinh\frac{\omega}{2T}}$

Still large uncertainties but very promising
→ thermodynamic+continuum limit needed
→ more constraints on the spectral function
→ other operators and observables from EFT?

Heavy Quark Diffusion constant

similar calculation on HQ momentum diffusion by Banerjee, Datta, Gavai, Majumdar, PRD85(2012)014510 (see also Meyer, New J.Phys. 13 (2011) 035008)

There is improvement in extracting transport coefficients from LQCD! still more improvement needed to reduce systematic uncertainties and to move from estimates to real numbers!

[M.He, R.J.Fries, R.Rapp, arXiv:1204.4442]

charm transport properties are important probes of strongly coupled medium

D-mesons are extremely interesting close to the transition region

hard to calculate in the lattice QCD

→ disconnected diagrams (all-to-all propagators)

 \rightarrow improved methods like multigrid inverter important

Charmonium:

[F.Karsch, E.Laermann, S.Mukherjee, P.Petreczky, arXiv:1203.3770]:

"... the change in the behavior of the charmonium screening masses around $T=1.5T_c$ is likely due to the melting of the meson states."

[H.T.Ding, OK et al., arXiv:1204.4945]:

Detailed knowledge of the vector correlation function at various T in quenched QCD

continuum extrapolation of correlation function still needed!

Results so far depend on MEM analysis \rightarrow Ansätze more difficult due to m_a dependence

----> Heavy quark diffusion constant: $2\pi DT pprox 2$

ightarrow No signs for bound states at and above 1.46 $op_{
m c}$

Conclusions

Effective Field Theory on the Lattice:

[FASTSUM Collaboration, G.Aarts et al., JHEP11(2011)103]:

NRQCD study of bottomonium:

survival of ground state till 2 T_c

melting of excited states above T_c

qualitative agreement with CMS results

[A.Francis,OK,M.Laine,J.Langelage, arXiv:1109.3941 and Banerjee et al., PRD85(2012)014510]:

HQET operator for Heavy Quark Momentum Diffusion constant

first results promising

Need to understand systematic uncertainties in both approaches in more detail