

Open-charm meson elliptic flow measurement in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV with ALICE at the LHC.

Giacomo Ortona for the ALICE collaboration

INFN & University of Torino

Hard Probes 2012 (Cagliari) - 27th May - 1st June 2012

G. Ortona INFN & University of Torino Hard Probes 2012 (Cagliari) - 27th May - 1st June 2012 Open-charm meson elliptic flow measurement with ALICE

1 Motivations

2 ALICE experiment

3 Analysis strategy

G. Ortona INFN & University of Torino Hard Probes 2012 (Cagliari) - 27th May - 1st June 2012

2012-05-28 2 / 22

Motivations

Motivations

- Initial spatial anisotropies in the overlap region of the colliding nuclei create asymmetric pressure gradients that give rise to momentum anisotropies.
- Given the reaction plane angle Ψ_{RP} , at midrapidity:

 $\frac{dN}{Nd\phi} = 1 + 2v_2 \cos(2(\phi - \Psi_{RP})) + ... \text{ and}$ Elliptic flow: $v_2 = \langle \cos[2(\phi - \Psi_{RP})] \rangle$

- Elliptic flow of heavy particles can bring useful information about the medium. Hydro models predict v_2 of charm to be smaller than the one of light hadrons at low p_t , where v_2 comes from charm flow (sensitive to c thermalization). At high p_t dominant effects are path length dependence of energy loss.
- R_{AA}^1 and v_2 both are sensitive to medium transport properties and are complementary measurements.

¹See talk by Z. Conesa del Valle

2012-05-28

Motivations

RHIC results and LHC predictions

Uphoff et al., arXiv:1205.4945

2012-05-28

ALICE at the LHC

- Inner Tracking System (ITS): Vertexing, tracking
 - Silicon Pixel Detector (SPD)
 - Silicon Drift Detector (SDD)
 - Silicon Strip Detector (SSD)
- Time Projection Chamber (TPC): Tracking, PID, event plane, centrality
- Time Of Flight (TOF): PID
- VZERO scintillators: trigger, event plane, centrality

5 / 22

2012-05-28

ALICE experiment

Data sample

- We present results from Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV collected in November 2011.
- 2 triggers used:
 - Minimum bias trigger
 - SemiCentral trigger: selects events in the 0-50% centrality range.
- Event centrality determination using VZERO amplitudes.
 Glauber-MC model to extract the total cross-section and normalize.
- Two centrality classes considered:
 - $\sim 9.5 \times 10^6$ collisions in 30-50% centrality
 - $\sim 7.1 \times 10^6$ collisions in 15-30% centrality

G. Ortona INFN & University of Torino Hard Probes 2012 (Cagliari) - 27th May - 1st June 2012

2012-05-28

D meson reconstruction

 Analysis strategy based on invariant mass analysis of fully reconstructed decay topologies displaced from the interaction vertex.

Meson	Decay channel	Cτ	BR
D^0	$D^0 ightarrow K^- \pi^+$	$\sim 120 \mu m$	$\sim 3.8\%$
D^+	$D^+ ightarrow K^- \pi^+ \pi^+$	\sim 310 μ m	$\sim 9.2\%$
D^{*+}	$D^{*+} ightarrow D^0 \pi^+$		$\sim 67.7\%$

- Main topological cuts: Pointing of the reconstructed D meson to the primary vertex of the event, large impact parameter, decay length.
- Particle IDentification (PID) from TPC and TOF.

2012-05-28

Event plane

- Event plane determination with TPC tracks with $\eta > 0$ or with VZERO detector.
- from the Q vector of the event: $\Psi_n = \frac{1}{n} \tan^{-1} \left(\frac{\sum_{i=0}^{N} w_i \sin n\phi_i}{\sum_{i=0}^{N} w_i \cos n\phi_i} \right)$
- φ-weights applied to improve TPC-EP flatness.
- Resolution: 2 random sub-events (TPC). Used to correct v₂

2012-05-28

D^0 and $D^+ v_2$ extraction: $2\Delta\phi$ bins

- From azimuthal asymmetries in signal compute $v_2 = \frac{\pi}{4} \frac{N_{IN} - N_{OUT}}{N_{IN} + N_{OUT}}$

Open-charm meson elliptic flow measurement with ALICE

Hard Probes 2012 (Cagliari) - 27th May - 1st June 2012

v_2 extraction: $\cos 2(\Delta \phi)$ vs mass

Alternative methods are used to check the robustness of the measurement.

2012-05-28

v_2 extraction: Q-cumulants and scalar products

Alternative methods are used to check the robustness of the measurement.

- 2 particle correlations Bilandzic, Snellings, Voloshin, Phys.Rev. C83
- TPC tracks used as Reference Flow Particles
- v_2^D extracted from a fit of v_2 vs mass
- Q-cumulants: $v_2 = \sqrt{\left\langle \frac{1}{P_{M,2}} \sum_{i \neq j} e^{2i(\phi_i \phi_j)} \right\rangle}$ • Scalar products: $v_2 = \frac{\left\langle \left\langle \hat{u} \cdot \frac{\vec{\alpha}}{M} \right\rangle \right\rangle}{\sqrt{\left\langle \frac{\vec{q^A}}{M^A} \cdot \frac{\vec{q^B}}{M^B} \right\rangle}}$, where $Q = \sum_{i}^{M} e^{2i\phi_i}$

Q-Cumulants method, simultaneous fit of invariant mass and v_2 vs mass

11 / 22

G. Ortona INFN & University of Torino Hard Probes 2012 (Cagliari) - 27th May - 1st June 2012 Open-charm meson elliptic flow measurement with ALICE.

2012-05-28

Signal extraction for EP: D^0 in 30-50%

- The signal yield in each bin is obtained from a fit of the invariant mass distribution of the candidates.
- The gaussian σ of the signal fit is fixed by the fit of the full ϕ distribution.
- Topological cuts are applied to improve the significance.

Analysis strategy

G. Ortona INFN & University of Torino Hard Probes 2012 (Cagliari) - 27th May - 1st June 2012

2012-05-28

Systematic uncertainties

The following sources of systematic uncertainty have been considered:

- Yield extraction (background fitting, free or fixed gaussian width, 0.02/0.03 absolute unc.)
- Different sets of topological cuts for D selection (0.02/0.04 absolute unc.)
- Feed-down from B contribution (see next slide)
- Centrality dependence of the event plane resolution within the classes 15-30% and 30-50% (EP methods only, 3%)
- Definition of sub-events for the event plane resolution (EP methods only, 7%)
- QC/SP methods: Background fitting functions (v_2 vs mass and yield extraction: 0.01/0.04 absolute unc.)

2012-05-28

- Our sample contains D from B decays. To obtain the v_2^{prompt} of D mesons from prompt c quarks we need to subtract their contribution.
- The v_2^{obs} we measure is $v_2^{obs} = f_{prompt} v_2^{prompt} + (1 - f_{prompt}) v_2^{feed-down}$. f_{prompt} is the fraction of prompt D mesons in the sample.
- To subtract the B feed-down contribution contribution, we need an hypothesis on v₂^{feed-down}. All models predict v₂^B ≤ v₂^D.
- We assume $v_2^{\text{feed-down}} = v_2^{\text{prompt}}$
 - This assumption on $v_2^{\text{feed-down}}$ is a source of (asymmetric) systematic uncertainty. Its limit for the case $v_2^{\text{feed-down}} = 0$ is given by $\frac{v_2^{\text{prompt}}}{f_{\text{prompt}}}$
 - $0.7 < f_{\text{prompt}} < 0.95$ computed from MonteCarlo and FONLL² prediction.
 - f_{prompt} depends on the relative R_{AA} suppression of feed-down and prompt

G. Ortona INFN & University of Torino

Hard Probes 2012 (Cagliari) - 27th May - 1st June 2012

2012-05-28

- Our sample contains D from B decays. To obtain the v_2^{prompt} of D mesons from prompt c quarks we need to subtract their contribution.
- The v_2^{obs} we measure is $v_2^{obs} = f_{prompt}v_2^{prompt} + (1 - f_{prompt})v_2^{feed-down}$. f_{prompt} is the fraction of prompt D mesons in the sample.
- To subtract the B feed-down contribution contribution, we need an hypothesis on v₂^{feed-down}. All models predict v₂^B ≤ v₂^D.
- We assume $v_2^{\text{feed-down}} = v_2^{\text{prompt}}$
 - This assumption on $v_2^{\text{feed-down}}$ is a source of (asymmetric) systematic uncertainty. Its limit for the case $v_2^{\text{feed-down}} = 0$ is given by $\frac{v_2^{\text{prompt}}}{f_{\text{prompt}}}$
 - $0.7 < f_{\text{prompt}} < 0.95$ computed from MonteCarlo and FONLL² prediction.
 - f_{prompt} depends on the relative R_{AA} suppression of feed-down and prompt

²Cacciari et al., JHEP9805 (1998) 007

2012-05-28

- Our sample contains D from B decays. To obtain the v₂^{prompt} of D mesons from prompt c quarks we need to subtract their contribution.
- The v_2^{obs} we measure is $v_2^{obs} = f_{prompt}v_2^{prompt} + (1 - f_{prompt})v_2^{feed-down}$. f_{prompt} is the fraction of prompt D mesons in the sample.
- To subtract the B feed-down contribution contribution, we need an hypothesis on v₂^{feed-down}. All models predict v₂^B ≤ v₂^D.
- We assume $v_2^{\text{feed-down}} = v_2^{\text{prompt}}$
 - This assumption on v₂^{feed-down} is a source of (asymmetric) systematic uncertainty. Its limit for the case v₂^{feed-down} = 0 is given by v₂^{Prompt}/_{feromet}
 - $0.7 < f_{\text{prompt}} < 0.95$ computed from MonteCarlo and FONLL² prediction.
 - f_{prompt} depends on the relative R_{AA} suppression of feed-down and prompt

G. Ortona INFN & University of Torino

Hard Probes 2012 (Cagliari) - 27th May - 1st June 2012

electrons, |y| < 0.8 non-prompt J/psi, |y| < 2.4 ---D mesons, |y| < 0.5 --0.25 n,=3+2, running coupling x=0.2 K=3 0.15 \$ 0.1 0.05 0 Ph+Ph -0.05 p+ (GeV Aichelin et al., arXiv:1201.4192 PbPb sorts = 2.76 TeV B-mesons [30-50] 0.5 22 0.1 0.0 -0.1 0 $p_t [GeV]$

Uphoff et al., arXiv:1205.4945

- Our sample contains D from B decays. To obtain the v₂^{prompt} of D mesons from prompt c quarks we need to subtract their contribution.
- The v_2^{obs} we measure is $v_2^{obs} = f_{prompt}v_2^{prompt} + (1 - f_{prompt})v_2^{feed-down}$. f_{prompt} is the fraction of prompt D mesons in the sample.
- To subtract the B feed-down contribution contribution, we need an hypothesis on v₂^{feed-down}. All models predict v₂^B ≤ v₂^D.
- We assume $v_2^{\text{feed-down}} = v_2^{\text{prompt}}$
 - This assumption on v₂^{feed-down} is a source of (asymmetric) systematic uncertainty. Its limit for the case v₂^{feed-down} = 0 is given by v₂^{v₂mmt}/_{feed-down}
 - $0.7 < f_{\text{prompt}} < 0.95$ computed from MonteCarlo and FONLL² prediction.
 - f_{prompt} depends on the relative R_{AA} suppression of feed-down and prompt

G. Ortona INFN & University of Torio

Hard Probes 2012 (Cagliari) - 27th May - 1st June 2012

Uphoff et al., arXiv:1205.4945

- Our sample contains D from B decays. To obtain the v₂^{prompt} of D mesons from prompt c quarks we need to subtract their contribution.
- The v_2^{obs} we measure is $v_2^{obs} = f_{prompt}v_2^{prompt} + (1 - f_{prompt})v_2^{feed-down}$. f_{prompt} is the fraction of prompt D mesons in the sample.
- To subtract the B feed-down contribution contribution, we need an hypothesis on v₂^{feed-down}. All models predict v₂^B ≤ v₂^D.
- We assume $v_2^{\text{feed-down}} = v_2^{\text{prompt}}$
 - This assumption on $v_2^{\text{feed-down}}$ is a source of (asymmetric) systematic uncertainty. Its limit for the case $v_2^{\text{feed-down}} = 0$ is given by $\frac{v_2^{\text{prompt}}}{f_{\text{prompt}}}$
 - $0.7 < f_{prompt} < 0.95$ computed from MonteCarlo and FONLL² prediction.
 - f_{prompt} depends on the relative R_{AA} suppression of feed-down and prompt

²Cacciari et al., JHEP9805 (1998) 007

Uphoff et al., arXiv:1205.4945

Aichelin et al., arXiv:1201.4192

0.25

0.15

0.1

0 Ph+Ph

-0.05

22

0.1

-0.1

\$

electrons, |y| < 0.8

n=3+2, running coupling

PbPb sqrts = 2.76 TeV B-mesons [30-50]

x=0.2 K=3.5

non-prompt J/psi, y < 2.4 D mesons, y < 0.5

B feed-down

- Our sample contains D from B decays. To obtain the v₂^{prompt} of D mesons from prompt c quarks we need to subtract their contribution.
- The v_2^{obs} we measure is $v_2^{obs} = f_{prompt}v_2^{prompt} + (1 - f_{prompt})v_2^{feed-down}$. f_{prompt} is the fraction of prompt D mesons in the sample.
- To subtract the B feed-down contribution contribution, we need an hypothesis on v₂^{feed-down}. All models predict v₂^B ≤ v₂^D.
- We assume $v_2^{\text{feed-down}} = v_2^{\text{prompt}}$
 - This assumption on $v_2^{\text{feed-down}}$ is a source of (asymmetric) systematic uncertainty. Its limit for the case $v_2^{\text{feed-down}} = 0$ is given by $\frac{v_2^{\text{prompt}}}{f_{\text{promot}}}$
 - $0.7 < f_{prompt} < 0.95$ computed from MonteCarlo and FONLL² prediction.
 - f_{prompt} depends on the relative R_{AA} suppression of feed-down and prompt

²Cacciari et al., JHEP9805 (1998) 007

B feed-down

- Our sample contains D from B decays. To obtain the v₂^{prompt} of D mesons from prompt c quarks we need to subtract their contribution.
- The v_2^{obs} we measure is $v_2^{obs} = f_{prompt}v_2^{prompt} + (1 - f_{prompt})v_2^{feed-down}$. f_{prompt} is the fraction of prompt D mesons in the sample.
- To subtract the B feed-down contribution contribution, we need an hypothesis on v₂^{feed-down}. All models predict v₂^B ≤ v₂^D.
- We assume $v_2^{\text{feed-down}} = v_2^{\text{prompt}}$
 - This assumption on $v_2^{\text{feed-down}}$ is a source of (asymmetric) systematic uncertainty. Its limit for the case $v_2^{\text{feed-down}} = 0$ is given by $\frac{v_2^{\text{prompt}}}{f_{\text{prompt}}}$
 - $0.7 < f_{prompt} < 0.95$ computed from MonteCarlo and FONLL² prediction.
 - f_{prompt} depends on the relative R_{AA} suppression of feed-down and prompt D: we vary $0.5 < \frac{R_{AA}^{\text{prompt}}}{R_{AA}^{\text{freed-down}}} < 2$

²Cacciari et al., JHEP9805 (1998) 007

Results

$D^0 v_2$ in 30-50% centrality

• Indication for non-zero v_2 (3 σ effect in 2 < p_t < 6 GeV/c)

D^0 and $D^+ v_2$ in 30-50% centrality

Results

ALICE

• D^0 and $D^+ v_2$ are compatible within uncertainties.

G. Ortona INFN & University of Torino Hard Probes 2012 (Cagliari) - 27th May - 1st June 2012 Results

D^0 : comparison with QC and SP

Q-Cumulants (2nd order)

Scalar product

G. Ortona INFN & University of Torino Hard Probes 2012 (Cagliari) - 27th May - 1st June 2012 Open-charm meson elliptic flow measurement with ALICE.

Results

D^0 centrality dependence

- D^0v_2 larger in 30-50% CC than in 15-30% CC in all p_t bins.
- Hint of v₂^D centrality dependence, consistent with v₂ larger in more peripheral events

G. Ortona INFN & University of Torino Hard Probes 2012 (Cagliari) - 27th May - 1st June 2012 Open-charm meson elliptic flow measurement with ALICE.

Comparison with charged hadrons...

Results

• D meson v_2 compatible within uncertainties with charged hadrons elliptic flow measured at ALICE in the same rapidity region.

G. Ortona INFN & University of Torino Hard Probes 2012 (Cagliari) - 27th May - 1st June 2012

Results

... and with theory

• BAMPS³ and Gossiaux et al.⁴ transport models can describe D v_2 although they underestimate the R_{AA} .

³Uphoff et al., arXiv:1112.1559 ⁴Phys. Rev. C79 (2009) 044906.

Conclusions

Coming soon...

• D* analysis is well advanced

G. Ortona INFN & University of Torino Hard Probes 2012 (Cagliari) - 27th May - 1st June 2012

2012-05-28

Conclusions

Conclusions

- The D meson v_2 measurement by the ALICE collaboration was shown using the $D^0 \rightarrow K^-\pi^+$ and $D^+ \rightarrow K^-\pi^+\pi^+$ channels
- Results are consistent among the different mesons (D^0, D^+) and several v_2 extraction methods:
 - Event plane (in-plane/out-of-plane anisotropy, side bands, fit v_2 vs mass), 2nd order Q-Cumulants, Scalar product
- The results hint to $v_2^D > 0$ (3 σ) in the p_t range 2 < p_t < 6 GeV/c
- The measured v₂ is compatible within uncertainties with the v₂ of the charged hadrons
- A possible dependence of v_2^D on centrality was observed between the centrality classes 15-30% and 30-50%
- The measurement is described by models of heavy-quark transport in the medium, however a simultaneous description of R_{AA} and v_2 is still lacking.

2012-05-28

BACKUP

G. Ortona $% 10^{-1}$ INFN & University of Torino Hard Probes 2012 (Cagliari) - 27^{th} May - 1^{st} June 2012

2012-05-28 22 / 22

Conclusions

Alternative methods: event plane, 2D methods

Compatible results for all the methods

22 / 22

G. Ortona INFN & University of Torino Hard Probes 2012 (Cagliari) - 27th May - 1st June 2012

2012-05-28