Measurement of electroweak boson production in PbPb collisions at 2.76 TeV with CMS

Lamia Benhabib

LLR-Ecole Polytechnique

-Hard Probes 2012-

May 29, 2012

Outlook

- Introduction
- CMS
- Results
 - 2010 PbPb data : $\int Ldt \sim 7 \ \mu \ b^{-1}$
 - ullet Z ightarrow μ^+ μ^- and W^\pm ightarrow μ^\pm u
- Conclusion

Motivation

- LHC allowed first observation and measurement of Z and W bosons in PbPb collisions
 - yields as a function of p_T , centrality and rapidity
 - measurement of W charge asymmetry
- W and Z signals are essentially predicted to be unaffected by the strongly interacting medium produced in PbPb collisions
- They are studied through their leptonic decay Z $\to \mu^+ \ \mu^-$, $W^\pm \to \mu^\pm \ \nu$
- Precise measurement of W and Z production in heavy ion can help to constrain nuclear PDFs

Muon reconstruction and performances

- Muon reconstruction requires information from tracker and muon system, tracks reconstructed in the tracker are matched to the tracks reconstruction in the muon system
- Adapted inner tracking for HI collisions
- Excellent high p_T resolution : 1-2%
- Good muon trigger performance

$extsf{Z} ightarrow \mu^+ \ \mu^-$ and $extsf{Z} ightarrow e^+ \ e^-$

$Z \rightarrow \mu^+ \mu^-$

- 39 Z candidates counted in a di-muon invariant mass window $[60.120 \text{ GeV}/c^2]$
- No background just with loose quality cuts, only one same-sign event in $[30,120 \text{ GeV}/c^2]$
- Z mass resolution comparable to p-p

Normalized Z yield vs. N_{part}

- Z production scales with T_{AB}, i.e. with the number of NN collisions
- Comparison to different theoretical predictions
 - POWHEG: no effect
 - Paukkunen: shadowing + isospin
 - Neufeld: isospin + energy loss
- Uncertainties: 16% statistical, 14% systematic

 \bullet Assuming from POWHEG $\frac{d\sigma_{pp}}{dy}=59.6~pb$ in |y|<2

$$\bullet \mapsto R_{AA} = \frac{dN_{AA}}{T_{AB}d\sigma_{PP}} = 1.00 \pm 0.16 \pm 0.14 \text{ (MinBias)}$$

Normalized Z yield vs. p_T and Rapidity

- 3 rapidity bins and 3 p_T bins
- $\frac{dN^z}{dy}$ is in a good agreement with different theoretical and MC predictions within statistical error bars and uncertainties
 - NLO calculation agrees with Z measurement in CMS

$$\bullet$$
 $u\bar{d} \rightarrow W^+$

$$\bullet$$
 $d\bar{u} o W^-$

- W mostly produced via the fusion of a valence quark and a see antiquark
 - More W⁺ (less W⁻) in pp than in PbPb

 → strong isospin effect
 (small when considering W⁺ + W⁻)
 - W are boosted in the valence quark direction (away from midrapidity)

- Spin conservation
 - $\mapsto \mu^+$ (μ^-) are boosted back to (away from) midrapidity
 - → Asymmetric μ⁺ and μ⁻ distributions, varying with pseudorapidity
 - \mapsto different acceptances for W^+ and W^-

$W \to \mu^{\pm} \nu$

Muon p_T spectrum

- ullet Trigger and selection cuts on μ^\pm
 - Single muon triggers p_T ≥ 2-3 GeV/c
 Number of hits in the tracker > 10
 - Compatibility with primary vertex
 - (< 0.3 mm)
- $\chi^2/\text{ndf} < 10$
- Veto on Z candidates

- PYTHIA simulation : $W\pm \to \mu^{\pm} \nu$ in pp collisions at $\sqrt{s}=2.76$ TeV
- Bump in the region $p_T^{\mu} > 30$ GeV/c where W decay product are expected
- At high p_T muons from W dominate
- $_{ullet}$ For the analysis we require $p_{T}^{\mu}>$ 25 GeV/c

Missing p_T

• $p_T = -\Sigma p_T$ of all tracker tracks with $p_T > p_T^{thresh}$, $p_T^{thresh} = 3$ GeV/c

- Selecting a high p_T muon $\mapsto \langle p_T \rangle \sim 40$ GeV/c, and almost no dependence vs. centrality
- Good agreement between MC (W $\to \mu^\pm \nu$ signal embedded in HYDJET PbPb) and PbPb Data for missing p_T calculation

W transverse mass *m*_T

• We calculate the W transverse mass $m_T = \sqrt{2p_T^{\mu}} p_T (1 - cos\phi)$ where

- Sharp Jacobean peak at $m_T = m_W$, smeared by detector resolution
- pp data at $\sqrt{s}=2.76$ TeV analyzed with the same procedure

- Better m_T resolution in pp than in PbPb
- Residual contamination (Z $\rightarrow \mu^+\mu^-$, W $\rightarrow \tau\nu$) subtracted (2%); QCD (<1%) included in systematic uncertainty for both pp and PbPb

Centrality dependance

- Significant change in W^+ and W^- cross sections between pp and PbPb systems \to isospin effect
 - PbPb(W^+) reduced with respect to $\sigma_{PP}(W^+)$ $R_{AA}(W^+) = 0.82 \pm 0.07 \pm 0.09$
 - PbPb(W^-) enhanced with respect to $\sigma_{pp}(W^-)$ $R_{AA}(W^-) = 1.46 \pm 0.14 \pm 0.16$
- No dependence on centrality within uncertainties
- ullet Once summed W^+ and W^- consistent with pp

$$R_{AA} = \frac{dN}{T_{AA}\sigma_{BB}} = 1.04 \pm 0.07 \pm 0.12$$

Muon charge asymmetry

• Muon charge asymmetry : $\frac{dN(W^+)-dN(W^-)}{dN(W^+)+dN(W^-)}$

- PbPb: Predominance of W^- production for large muon rapidities
- pp: W^+ production higher than W^-
- Symmetry measured values compatible with theoretical predictions (MCFM + CTEQ6.6 + EPS09 (nuclear PDFs))

Conclusion

- Within uncertainties no modification is observed with respect to theoretical NLO pQCD p-p cross sections scaled by elementary nucleon-nucleon collisions
- Confirm the validity of Glauber scaling in nucleus-nucleus collisions
- For the Z boson, expected shadowing (10-20%), Isospin effect (3%) and energy loss (3%) cannot be confirmed or excluded, one need more statistics
- Individual W^+ and W^- yields in PbPb interactions exhibit an isospin effect, enhancement for W^- production and reduction of W^+ with respect to that measured in pp collisions at same \sqrt{s}
- Muon charge asymmetry evaluated in PbPb and pp interacting systems. In agreement with expectations from NLO pQCD calculations
- Z and W detailed and precise studies may help to constrain PDFs

Back-up

$extsf{Z} ightarrow \mu^+ \; \mu^-$ and $extsf{Z} ightarrow e^+ \; e^-$ with 2011 data

On going analysis on Z $\rightarrow \mu^+ \ \mu^-$, Z \rightarrow $e^+ \ e^-$ with 2011 PbPb data

