The relation between cross-section, decay width and imaginary potential of heavy quarkonium in a quark-gluon plasma

Miguel A. Escobedo
Physik-Department T30f. Technische Universität München

28th of May

Nora Brambilla, MAE, Jacopo Ghiglieri, Antonio Vairo, JHEP12(2011)116 and in preparation.
Hard Probes 2012, Cagliari

Outline

(1) Motivation

(2) Gluo-dissociation
(3) Quasi-free dissociation
(4) Conclusions

Motivation

What has been found until now using EFTs in Quarkonia?

- EFT provide a systematic way to extract information from the fact that $m_{Q} \gg \frac{1}{r} \gg E$ in Quarkonia. Computations are easier and it is more difficult to neglect a needed resummation.
- For $T \gg \frac{1}{r} \sim m_{D}$ we recover the perturbative potential with an imaginary part found by Laine, Philipsen, Romatschke and Tassler (2007).
- For $T \lesssim \frac{1}{r}$ we were able to compute thermal corrections to the binding energies and the decay width.
- For the decay width we found two different mechanism. The breaking of the singlet into an octet due to the absorption of a gluon from the medium and the Landau damping of the gluons that are exchanged between the heavy quarks.

Other approach to quarkonia decay width

- Use a cross-section computed at $T=0, \sigma(k)$.
- Convolute with the thermal distribution

$$
\Gamma=\int \frac{d^{3} k}{(2 \pi)^{3}} f(k) \sigma(k)
$$

- These cross-sections are computed in perturbation theory and later they are "adapted" to strong coupling by using α_{s} as a free parameter, introducing thermal masses...
- This information is used as an input to predict the observed suppression in nowadays experiments. See for example Zhao and Rapp (2010).

Perturbative computations of cross-section for quarkonia in the literature

Gluo-dissociation

Bhanot and Peskin (1979)
Quasi-free dissociation

Combridge (1978), Park, Kim, Song, Lee and Wong (2007)

Motivation

- Translate the EFT results that have been found to cross-sections convoluted with distribution function "language".
- Analyze the assumptions made by previous perturbative computations and check if they agree or disagree with the EFT framework.

Gluo-dissociation

Gluo-dissociation in Bhanot and Peskin

- They use OPE. The interaction between the singlet, the octet and the gluon is a color dipole interaction.
- This approximation is convenient because the gluo-dissociation is the dominant dissociation mechanism only for $E \gg m_{D}$. It is very similar to what is done in pNRQCD.
- They use the large N_{c} limit approximation. In this limit $V_{o}=0$ and computations are simplified.
- We are going to see that the large N_{c} limit is a good approximation for $T \gg E$ but not for $T \sim E$.

Gluo-dissociation in pNRQCD

- Computed for $T \gg E$ in HQ. Brambilla, MAE, Ghiglieri, Soto and Vairo (2010)

$$
\delta \Gamma_{n}=\frac{1}{3} N_{C}^{2} C_{F} \alpha_{\mathrm{s}}^{3} T-\frac{16}{3 m} C_{F} \alpha_{\mathrm{s}} T E_{n}+\frac{4}{3} N_{C} C_{F} \alpha_{\mathrm{s}}^{2} T \frac{2}{m n^{2} a_{0}}
$$

where E_{n} is the binding energy and a_{0} the Bohr radius.

- Computed for $T \sim E$ in the hydrogen atom. MAE and Soto (2008).

$$
\delta \Gamma_{n}=\frac{4}{3} \alpha_{S} C_{F} T\langle n| r_{i} \frac{\left|E_{n}-h_{o}\right|^{3}}{e^{\beta\left|E_{n}-h_{o}\right|}-1} r_{i}|n\rangle
$$

Cutting rules at finite temperature

Similar to what is found at $T=0$.

- Multiply by $n_{B}(k)\left(n_{F}(k)\right)$ for in-coming bosons (fermions).
- Multiply by $1+n_{B}(k)\left(1-n_{F}(k)\right)$ for out-going bosons (fermions).

Kobes and Semenoff (1986)

Cutting rules at finite temperature

Similar to what is found at $T=0$.

- Multiply by $n_{B}(k)\left(n_{F}(k)\right)$ for in-coming bosons (fermions).
- Multiply by $1+n_{B}(k)\left(1-n_{F}(k)\right)$ for out-going bosons (fermions).

In this case we get a structure

$$
\delta \Gamma_{n}=\int \frac{d^{3} k}{(2 \pi)^{3}} n_{B}(k)\langle n| h_{\sigma}(r, p, k)|n\rangle
$$

A choice

$$
\delta \Gamma_{n}=\int \frac{d^{3} k}{(2 \pi)^{3}} n_{B}(k)\langle n| h_{\sigma}(r, p, k)|n\rangle
$$

- If we integrate out k first we recover the pNRQCD result
- If we choose for example $n=1 S$ and compute the matrix element.

$$
\delta \Gamma_{1 S}=\int \frac{d^{3} k}{(2 \pi)^{3}} n_{B}(k) \sigma_{g d}(k)
$$

pNRQCD gluo-dissociation $\sigma_{g d}$ for $1 S$

- If we do the same approximations as Bhanot and Peskin (large N_{c} limit) we recover their result.
- Without doing this approximation we get

$$
\left.\sigma_{g d}(k)=\frac{8 \pi^{2} C_{F} \alpha_{\mathrm{s}} m a_{0}^{2} k}{3}\left|\langle 1 S| r_{i}\right| m a_{0}^{2}\left(k+E_{1}\right)\right\rangle\left._{o}\right|^{2} \Theta\left(k+E_{1}\right)
$$

$|\epsilon\rangle_{o}$ are the octet wave function taking into account the octet potential.

$$
\int_{0}^{\infty} d \epsilon\langle\epsilon \mid \epsilon\rangle_{o}=1
$$

Agrees with Brezinski and Wolschin (2011)

Comparison between Bhanot and Peskin and pNRQCD gluo-dissociation

$$
\sigma_{g d}(k)=\sigma_{R} g(x)
$$

with $\sigma_{R}=\frac{32 \pi C_{F} \alpha_{\mathrm{s}} \mathrm{a}_{0}^{2}}{3}$ and $x=\frac{k}{\left|E_{1}\right|}$

Bhanot and Peskin large N_{c} limit pNRQCD

Comparison between Bhanot and Peskin and pNRQCD gluo-dissociation

Comparison between Bhanot and Peskin and pNRQCD gluo-dissociation

Bhanot and Peskin, pNRQCD

Comparison between Bhanot and Peskin and pNRQCD gluo-dissociation

Quasi-free dissociation

(Or Landau damping)

Quasi-free in Combridge

He computed the process $q c \rightarrow q c$ for a charm quark, no information of the bound state is included.

(a)

(b)

Quasi-free in Combridge

He computed the process $q c \rightarrow q c$ for a charm quark, no information of the bound state is included.

(a)

Note that in NRQCD (valid for $m_{Q} \gg T$) and using the Coulomb gauge the crossed diagrams are subleading.

HQ potential for $T \gg \frac{1}{r} \sim m_{D}$

Laine, Philipsen, Romatschke and Tassler

pNRQCD

Imaginary part of the potential

By the optical theorem

Imaginary part of the potential

\sum

Combridge approximation

Interference term is neglected. Good approximation for $T, m_{D} \gg \frac{1}{r}$.

From the cross-section to the decay width

- Apart from the heavy quarks that are not thermalized, there is an in-coming parton and an out-going parton.
- The decay width then has the structure

$$
\Gamma=\int \frac{d^{3} k}{(2 \pi)^{3}} f(k)(1+f(k)) \sigma(k)
$$

From the cross-section to the decay width

The information of in-coming and out-going parton is included in EFT formulation in the symmetric self-energy that is included in the gluon propagator (often in the HTL approximation). For example, the part related with fermion loops is

$$
\Pi_{00}^{S}\left(q \gg q_{0}\right)=\frac{4 i g^{2} T_{F} N_{F}}{\pi q} \int_{k>\frac{q}{2}} d k k^{2}\left(1-\frac{q^{2}}{4 k^{2}}\right) n_{F}(k)\left(1-n_{F}(k)\right)
$$

From the cross-section to the decay width

In conclusion, thermal field theory does not justify in this case

$$
\Gamma=\int \frac{d^{3} k}{(2 \pi)^{3}} f(k) \sigma(k)
$$

but instead

$$
\Gamma=\int \frac{d^{3} k}{(2 \pi)^{3}} f(k)(1+f(k)) \sigma(k)
$$

Cross-section for the $1 S$ state

We proceed in a similar way to what is done for the gluo-dissociation. We start by our previous EFT computations and "translate" them

- In gluo-dissociation only a energy scale was relevant. This is not the case now.
- As we need information of the scale m_{D} the HTL has to be performed at some part of the computation. σ is going to depend also on the temperature due to this.

Some notation

$$
\sigma\left(k, m_{D}\right)=\sigma_{R} f(x, y)
$$

where

$$
\begin{gathered}
\sigma_{R}=8 \pi C_{F} \alpha_{\mathrm{S}}^{2} N_{F} a_{0}^{2} \\
x=m_{D} a_{0} \\
y=k a_{0}
\end{gathered}
$$

I will only show the result for the fermion part, the boson part is quantitatively and qualitatively very similar.
$T \sim \frac{1}{r} \gg m_{D}$ cross-section for $1 S$

$$
f(x, y)=-\frac{3}{2}+2 \log \left(\frac{2}{x}\right)+\log \left(\frac{y^{2}}{1+y^{2}}\right)-\frac{1}{y^{2}} \log \left(1+y^{2}\right)
$$

$x \ll 1$ and $y \sim 1$.

$m_{D} a_{0}=0.1$ and $m_{D} a_{0}=0.2$.

Summary cross-section for $1 S$

$m_{D} a_{0}=0.001$

$\frac{1}{r} \gg T \gg m_{D}, T \sim \frac{1}{r} \gg m_{D}$ and $T \gg \frac{1}{r} \sim m_{D}$. Discrepancy between blue and red lines signals a failure of color dipole approximation.

Conclusions

- The Bhanot and Peskin result that is normally used correspond to the large N_{c} limit of pNRQCD result. This is a good approximation for $T \gg E$ but it is not so good for $T \sim E$.
- The imaginary part of the potential and the quasi-free dissociation describe the same physical process at different temperatures.
- The perturbative computations of the cross-section that existed before the use of EFT techniques ignored all bound state properties or used a cross-section equivalent to color dipole approximation.
- The quasi-free cross-section goes to an asymptotic value for large incoming momentum. This is the physics described by the imaginary part of Laine et al. potential.

The End

pNRQCD gluo-dissociation $\sigma_{g d}$ for $1 S$

The Coulomb wave-function with a repulsive potential (as the one of the octet) were taken from Abramowitz and Stegun (1972)

$$
\sigma_{g d}(k)=\frac{32 \pi C_{F} \alpha_{\mathrm{s}} m a_{0}^{3} k\left(C_{1}\left(\frac{1}{8 \sqrt{\tau}}\right)\right)^{2}\left(f\left(\frac{1}{\sqrt{\tau}}\right)\right)^{2}}{3 \tau^{7 / 2}} \Theta(\tau)
$$

where

$$
\begin{gathered}
\tau=m a_{0}^{2}\left(k+E_{1}\right) \\
C_{1}(x)=\frac{\sqrt{1+x^{2}}}{3} \sqrt{\frac{2 \pi x}{e^{2 \pi x}-1}} \\
f(x)=\frac{51}{2} \frac{x e^{\frac{x}{4}} \operatorname{arccot}(x)}{(x+1)^{3}}
\end{gathered}
$$

Agrees with Brezinski and Wolschin (2011)
$T \gg \frac{1}{r} \sim m_{D}$ cross-section for $1 S$

$$
f(x, y)=2\left(1-4 \frac{x^{4}-16+8 x^{2} \log \left(\frac{4}{x^{2}}\right)}{\left(x^{2}-4\right)^{3}}\right)
$$

$x \sim 1$ and $y \gg 1$

$T \sim \frac{1}{r} \gg m_{D}$ cross-section for $1 S$

$$
f(x, y)=-\frac{3}{2}+2 \log \left(\frac{2}{x}\right)+\log \left(\frac{y^{2}}{1+y^{2}}\right)-\frac{1}{y^{2}} \log \left(1+y^{2}\right)
$$

$x \ll 1$ and $y \sim 1$.

$T \gg \frac{1}{r} \sim m_{D}, k a_{0}=10$ and $k a_{0}=1$. Discrepancy between the blue and red line signals the need for HTL resummation.

$\frac{1}{r} \gg T \gg m_{D} \gg E$ cross-section for $1 S$

$$
f(x, y)=2\left(\log \left(\frac{2 y}{x}\right)-1\right)
$$

$1 \gg y \gg x$.

