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Motivation
• Preliminary data in QM11: unmodified in-medium jet FF 

• Simple interpretation: jets fragment outside

Is this possible?

• Goal:

• How long does a vacuum shower take to develop?

• How does this time compare to in-medium path lengths?



• In vacuum: 

• Jet evolution is described by pQCD (up to a scale Q0).

• Well controlled momentum space description.

• Limited space-time knowledge:  only time scale estimates

• Below Q0, non-perturbative modeling is needed

Vacuum Shower



• Assumptions:

• Q-ordered shower ⇒ time-ordered shower

• The typical time between splittings is the formation time:

• We also allow for a decay-like dispersion (“error gauge”)

Estimating Time Scales

• The emission time accumulates 
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absorption (quenching) model for jets is used and the path length distributions for leading and associated jets are
obtained. In section IV we convolute both distribution to determine the fraction of splittings that an unmodified jet
would suffer outside of the medium created in heavy ion collisions. We conclude the paper in section V by discussing
how our vacuum jet analysis can help constraining models for in-medium modification of jets.

II. ESTIMATING THE TIME STRUCTURE OF QCD VACUUM SHOWERS.

The description of final state QCD branching is a perfect example of the predictive power of perturbative QCD.
While both the evolution equations that dictate the branching dynamics and their implementation in modern Monte
Carlo event generators have become standard textbook material (see for example [21]), they are invariably formulated
in momentum space and little is known about the space-time structure of the branching process. Most attempts to
understand this structure rely on an uncertainty principle argument to estimate the typical emission times of partons:
in a time-like parton shower, the typical lifetime of a parton of virtuality Q (i.e. the time elapsed prior to its splitting
into two less virtual objects) is given, in its rest frame, by τf ∼ 1/Q. Thus, a parton with energy E in the centre of
mass frame of the collision has its lifetime boosted to

τf = 2
E

Q2
, (1)

where the factor 2 ensures that for the emission of soft gluons with four momenta (ω, k⊥, k), the formation time
coincides with the usual relation τf = 2ω/k2⊥ . In this note we assume that the above argument holds, generalizing it
to the estimation of the fragmentation times of partons in a QCD shower.

Eq. (1) describes the lifetime of a single virtual excitation. However, final state partons in a typical high energy
QCD process undergo several perturbatively describable splittings with the decay time of a given parton in the chain
dictated by the kinematics of the fragmenting parton at that point in the chain. Hence, eq. (1) determines the time
to emission relative to the parton being formed. Since DGLAP evolution imposes a strict ordering in virtuality, with
those splittings involving higher virtuality occurring earlier, the time for splitting of a parton following n previous
splittings is given by

τS =
n∑

i=1

τf (i) . (2)

These assumptions allow us, provided the virtuality at each step of the decay chain is known, to estimate the typical
times needed for the evolution of a vacuum QCD shower. We note that the determination of the relevant virtualities
is necessarily model dependent. Although solidly grounded in QCD, the practical implementation of the evolution
process in event generators requires modeling assumptions that go beyond the controlled approximations in which
QCD calculations are performed. Even within a given event generator several different schemes for the branching
process are considered. The aim of this note is to provide a simple, yet realistic, estimate. As such we resort to a
specific scheme implemented in PYTHIA [22] where the evolution variable is the mass of the splitting virtual object
and energy momentum conservation is imposed at each splitting step. Within this implementation we can reconstruct
the branching chain of hard patrons in any process and assign an emission τS to each splitting.

In all event generators, DGLAP evolution is carried down to a minimal scale Q0 after which the dynamics is
non-perturbative. Since different event generators vary considerably at this stage we will refrain from discussing the
time structure at such late stages. However, in order to account for the dynamics at this stage we will add, for each
fragment, a final splitting to the perturbative chain at a time given by eq. (1) with virtuality Q = Q0 (Q0 = 1 GeV
in PYTHIA). This time can be understood as the lifetime of a parton prior to its fragmentation onto hadrons.

Of particular interest for the purposes of this note is the probability of splitting after a given time τ . To construct
this probability, and for reasons that will become apparent in the next section, we will perform a longitudinal boost
from the collision centre of mass frame to the frame where the parent parton is transverse to the beam direction. In
the remainder of the paper we will refer to the time in this boosted frame simply as time.

The emission time of a given step in the decay chain depends on prior splittings, see eq. (2). Thus, information on
the chain back to the hard vertex is required. However, fragmentation functions are mostly sensitive to the dynamics
of the closest common ancestor (parent parton) to the final fragments and branchings prior to the parent parton only
result in overall kinematical changes. Thus, for each final parton, we reconstruct the full chain of branchings back to
the parent parton. To avoid double counting in jets with more than one final state parton, splittings common to two
or more particles are counted only once. Also, only splittings that are causally connected to those partons that fall
within the specific jet selection and reconstruction procedure will be taken into account. Fig. 1 provides a pictorial
description of this procedure.

⇒
ω→0
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FIG. 1: Sketch of the evolution process for the associated jet in a di-jet event. The fragmentation proceeds by several splittings
from the initial hard vertex up to the final particles. The jet reconstruction procedure, represented by the blue cone, does not
include all the fragments generated in the evolution. Thus, not all the splittings are directly connected to the particles used
for the jet reconstruction. Note that all the fragments within the cone originate from a common ancestor (the parent parton,
marked with a square TO BE MARKED) and prior splittings only change the overall kinematics of that parton. From all the
splittings in the chain, only nR splittings, represented by circles, are seeded by the parent parton and connected to the final
reconstructed fragments, these splittings influence the most the final fragment distribution (up to kinematical changes).

The probability distribution Pout
R (L) for the splitting after a a given time L is obtained from the event generator

as the average over the Monte Carlo sample

Pout
R (L) =

〈
nout
R (L)

nR

〉
, (3)

where the index R indicates that only branchings in the chains of those that end up within the jet definition are
included, nR is the total number of such splittings in a an event, and nout

R (L) the number of those that occur at
τS > L. The distribution Pout

R (L) depends on the specific procedure employed to select and reconstruct the jet
sample, in particular on the jet definition, via the Monte Carlo average.

As we have stressed repeatedly, the above procedure provides only an estimate of the typical distribution since it
is based on the identification of the typical scale of the emission process and assumes that all the splittings occur at
such fixed time. This procedure clearly overestimates the emission time, since in reality it is given by a distribution in
times with characteristic value τf , with emission both at earlier and later times than τf being allowed. To account for
this spread, we will use a simple assumption for the emission time distribution: the probability that a given splitting
with typical formation time τf occurs at time τ , D(τ) is given by

D(τ) =
1

τf
e−τ/τf . (4)

This allows us to assign to each splitting a (random) emission time, and, by following the discussion around eq. (2),
determine the absolute time of each emission. We will use these two evaluations of the emission time — with a fixed
typical time given by eq. (1) and with a random sampling around τf , eq. (4) — as an estimate of the uncertainty in
the distribution.

We constructed our event samples by generating di-jet events with Pythia 6.4 [22] for pp collisions at a centre-of-
mass energy of 2.76 TeV without underlying event. Jets were reconstructed at the partonic level using the anti-kt
sequential recombination algorithm [24] for different as implemented in FastJet [25]. The event were selected with
criteria based on those used by the CMS collaboration [23]. A minimum pT,leading of 100 GeV was required for
the leading jet. Once such jet was found, the subleading jet was required to have pT,associated >40 GeV and to be
sufficiently separated in azimuth from the leading jet, ∆φ1,2 ≥ 2π/3. Further, a cut in rapidity was imposed, selecting
only jets within |y| <2.
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Jet Reconstuction

• Reconstruction only captures fragments within a “cone”

• Not all vertexes affect the reconstructed particles

• All identified fragments originate from a common vertex

• This is not necessarily the hard vertex



Identifying Relevant Vertexes

• We only consider vertexes after the common vertex.

• Vertexes prior to the “common ancestor” only change its 
kinematics (E and Q available for the decay)

• We disregard late vertexes of partons outside of the cone.

• We neglect non perturbative effects (color flows) in the 
final distribution.
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FIG. 1: Sketch of the evolution process for the associated jet in a di-jet event. The fragmentation proceeds by several splittings
from the initial hard vertex up to the final particles. The jet reconstruction procedure, represented by the blue cone, does not
include all the fragments generated in the evolution. Thus, not all the splittings are directly connected to the particles used
for the jet reconstruction. Note that all the fragments within the cone originate from a common ancestor (the parent parton,
marked with a square TO BE MARKED) and prior splittings only change the overall kinematics of that parton. From all the
splittings in the chain, only nR splittings, represented by circles, are seeded by the parent parton and connected to the final
reconstructed fragments, these splittings influence the most the final fragment distribution (up to kinematical changes).

The probability distribution Pout
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as the average over the Monte Carlo sample

Pout
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, (3)
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included, nR is the total number of such splittings in a an event, and nout

R (L) the number of those that occur at
τS > L. The distribution Pout

R (L) depends on the specific procedure employed to select and reconstruct the jet
sample, in particular on the jet definition, via the Monte Carlo average.

As we have stressed repeatedly, the above procedure provides only an estimate of the typical distribution since it
is based on the identification of the typical scale of the emission process and assumes that all the splittings occur at
such fixed time. This procedure clearly overestimates the emission time, since in reality it is given by a distribution in
times with characteristic value τf , with emission both at earlier and later times than τf being allowed. To account for
this spread, we will use a simple assumption for the emission time distribution: the probability that a given splitting
with typical formation time τf occurs at time τ , D(τ) is given by

D(τ) =
1

τf
e−τ/τf . (4)

This allows us to assign to each splitting a (random) emission time, and, by following the discussion around eq. (2),
determine the absolute time of each emission. We will use these two evaluations of the emission time — with a fixed
typical time given by eq. (1) and with a random sampling around τf , eq. (4) — as an estimate of the uncertainty in
the distribution.

We constructed our event samples by generating di-jet events with Pythia 6.4 [22] for pp collisions at a centre-of-
mass energy of 2.76 TeV without underlying event. Jets were reconstructed at the partonic level using the anti-kt
sequential recombination algorithm [24] for different as implemented in FastJet [25]. The event were selected with
criteria based on those used by the CMS collaboration [23]. A minimum pT,leading of 100 GeV was required for
the leading jet. Once such jet was found, the subleading jet was required to have pT,associated >40 GeV and to be
sufficiently separated in azimuth from the leading jet, ∆φ1,2 ≥ 2π/3. Further, a cut in rapidity was imposed, selecting
only jets within |y| <2.

• Boosting to the frame where each parton is transverse:  
the probability of splitting after a transverse length L

• We evaluate this observable in PYTHIA for di-jet events

• Vacuum fragmentation develops over a very long time!

(parton level, no underlying event)
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FIG. 2: Probability that the splittings of the parent partons occur at a time larger than L in the frame where the parton is
transverse for leading (left) and associated (right) jets in di-jet events of pT,leading > 100 GeV and pT,associated > 40 GeV. The
bands correspond to the two different estimates of the splitting time described in the text. A transverse momentum pT -cut at
reconstrunction level has been introduced. As the pT -cut is increased, late fragmentation patterns are favored.

sequential recombination algorithm [19] for different values of R, as implemented in FastJet [20]. The events were
selected with criteria based on those used by the CMS collaboration [37]. A minimum pT,leading of 100 GeV was
required for the leading jet. Once such jet was found, the subleading jet was required to have pT,associated >40 GeV
and to be sufficiently separated in azimuth from the leading jet, ∆φ1,2 ≥ 2π/3. Further, a cut in rapidity was imposed,
selecting only jets within |y| <2.

From this sample we compute the restricted probability Pout
R (L) for both the leading and associated jet, see Fig.

2. In these plots the bands correspond to the two models for computing the emission time described above. A
transverse momentum cut of the gluons used in the jet reconstruction has been introduced: in both plots the upper
band corresponds to a pT -cut of 10 GeV and the lower one to 0.1 GeV. For either cut, both in the leading and in
the associated jet we observe that the shower develops in a rather long time. In fact, the distribution possesses a
long tail at very large times, which reflects the logarithmic divergence in Q2 of the splitting kernel. Remarkably, the
probability of splittings occurring at times as large as L = 5 fm, comparable to the radius of a large nucleus, is larger
than 50%.

III. IN-MEDIUM LENGTH IN HEAVY ION COLLISIONS

The dense hadronic matter produced in a heavy ion collision can probe and modify the time structure of the
evolution process described above. The typical size of the medium produced by these collisions is of the order of the
nuclear radius and, as we have seen, comparable to the characteristic time for the development of the vacuum shower.
For this reason, we would like to compare the vacuum fragmentation pattern with the time extent that jets travel
through the medium. It is clear that not all jets in a nuclear collision traverse the same amount of medium, as they
are not all produced at the same point within the colliding region, and path length fluctuations must be taken into
account. These originate from simple geometrical considerations which we describe below.

As it is well known, the emission points of hard jets in the transverse plane (x0, y0) are distributed according to
the number of collisions per unit area, TAA(x0, y0, b)

TAA(x0, y0, b) = TA(x− b/2, y)TA(x+ b/2, y) (5)

where the nuclear density profile TA(x, y) =
∫
dzρ(x2 + y2 + z2) is computed from the nuclear density ρ(r), given by

the standard Woods-Saxon potential [48]. From these emission points, jets can travel at any direction in the transverse
plane given by the (randomly selected) unit vector n̂ = (cos(φ), sin(φ)).



Comparing to Nuclear scale

• How does the vacuum pattern compare to the in-
medium length evolution?

• If there would be no large modifications of the evolution 
time: what would be the probability of splitting outside?
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• Woods-Saxon profile with 1/τ longitudinal expansion

• From each point, the density weight length:
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frame where the propagating parton is transverse to the beam. Note that this is also the frame where the distribution
in fig. 1 is computed. As before, to simplify the discussion we will always refer to transverse lengths below.

Since medium effects are stronger when matter is denser, we introduced the ”density weighted” path length of the
jet in the system given by

L = 2

∫∞
0 dττρ(x+ n̂τ, τ)
∫∞
0 dτρ(x+ n̂τ, τ)

. (6)

where ρ(x, τ) is the density in the (transverse) position x and time τ . Since we expect the bulk of the matter to scale
with the number of participating nucleons in the collision, we will assume, as customary, that the relevant density
scale is proportional to the the Wounded nucleon profile ρWN (x), which we compute assuming σNN = 42 mb. The
explicit time dependence arises from the dilution of the system due to collective expansion. For simplicity, we will
only take into account the longitudinal expansion in a Bjorken-like fashion, assuming a initialization time, τ0 = 0.5
fm. We model the density, ρ, by

ρ(x, τ) ∝ ρWN (x)
τ0

τ + τ0
. (7)

Averaging over the transverse plane, over all possible directions of emission and over the impact parameter of the
collision, we obtained the distribution of (density weighted) in-medium path lengths, Pdw(L), which is shown by the
dashed line in fig. 3 for a centrality class of 0 − 30% (which coincides with the one used in the jet analysis [23] ).
Note that by taking into account the longitudinal expansion, as in eq. 6 the distribution of effective path lengths is
concentrated at smaller values than it the medium would have been taken as static [11], since at any point in the
transverse plane the density drops with time.

If medium effects would be absent, or if it would be possible to reconstruct all the initial energy of the jet (prior
to medium interaction), the path length distribution described above would coincide with the distribution probed
by the finally observed jets. However, if those effects are not small, as inferred from the ATLAS [17] and CMS [18]
measurements, a surface bias occurs, since the combination of energy loss and a steeply falling spectrum favors small
in medium path lengths. The exact description of this effect demands a good microscopic description of the process of
jet energy loss and its subsequent evolution, which is beyond the scope of this note, but a simple estimate of this effect
can be achieved by assuming an absorption model for the in medium jets [42]. Motivated by the fact that in-medium
radiative energy loss grows like L2, we assume a survival probability for the jet given by

A(L) = e−L2/L2
c (8)

with Lc, the critical length, a model parameter. The model is fixed by demanding that after convoluting with the initial
geometry, the overall survival probability of an inclusive jet coincides with the jet RAA. Motivated by preliminary
Rcp measurements for jets [20], we assume RAA = 0.5, which yields Lc = 3.3 fm.

The trigger bias we have just described leads to a different path length distribution probed by inclusive jets and
for di-jets, since the requirement of a leading jet fixes the production point and forces the associated jet to travel a
longer distance; neglecting accoplanarity effects between the two jets, this one is obtain via eq. 7 after substituting
φ → φ + π in the definition of n̂ and the demand that the leading jet is not absorbed. This distribution is shown
by the solid line in Fig. 3 which, as expected, is shifted towards larger values. However, both because of the large
centrality bin that we have considered and because the strong longitudinal expansion, most of the jets possess an in
medium path length of less than L = 5 fm.

IV. FRAGMENTATION OUTSIDE OF THE MEDIUM

The combination of the probability distribution in fig. 2 and the in-medium path length distribution fig. 3 shows
that if there would be no medium-induced modifications of the fragmentation process, so that jet evolution in matter
would proceed as in the vacuum, a large fraction of the branchings would occur outside of the medium. The interactions
of high energy partons and the medium, however, affect the properties of final jet observables; in particular, additional
medium-induced gluon radiation is expected to occur which alters the emission process. Clearly, the dynamics of those
splittings that occur outside of the medium remain unchanged, up to an overall reduction of the parent parton energy
when it leaves the medium due to energy loss [43]. Both this phase space reduction and the additional splittings tend
to accelerate the evolution process as compared to the vacuum. As a consequence, the in-medium formation time is
modified, as it has been explicitly shown in the in the context of radiative energy loss in [36, 37]. Thus, by convoluting

(0-30 %)

• Simple absorption model to discriminate leading and 
associated jets: Probability of jet absorption:
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• If in-medium jet evolution proceeds like in vacuum:

Conclusions

More than 
80% of leading 

70% of associated 
jet fragments occur outside

• Unless a conspiracy of effects occurs, unmodified FF imply

In-medium evolution cannot alter Q2 evolution significantly 

Additional in-medium radiation must be:

-Emitted at large angles (outside of the cone)

-Dominated by soft fragments

and/or


