Out of Medium Fragmentation from Long-Lived Jet Showers.

Jorge Casalderrey-Solana

In collaboration with G. Milhano and P. Quiroga-Arias (ArXiv: 1111.0310)

Motivation

- Preliminary data in QMII: unmodified in-medium jet FF
- Simple interpretation: jets fragment outside

Is this possible?

- Goal:
 - How long does a vacuum shower take to develop?
 - How does this time compare to in-medium path lengths?

Vacuum Shower

- In vacuum:
 - Jet evolution is described by pQCD (up to a scale Q_0).
 - Well controlled momentum space description.
 - Limited space-time knowledge: only time scale estimates
 - Below Q₀, non-perturbative modeling is needed

Estimating Time Scales

- Assumptions:
 - Q-ordered shower ⇒ time-ordered shower
 - The emission time accumulates
 - The typical time between splittings is the formation time:

$$\tau_f = 2\frac{E}{Q^2} \qquad \Longrightarrow_{\omega \to 0} \qquad \tau_f = \frac{2\omega}{k_\perp^2}$$

We also allow for a decay-like dispersion ("error gauge")

$$D(\tau) = \frac{1}{\tau_f} e^{-\tau/\tau_f}$$

Jet Reconstuction

- Reconstruction only captures fragments within a "cone"
- Not all vertexes affect the reconstructed particles
- All identified fragments originate from a common vertex
 - This is not necessarily the hard vertex

Identifying Relevant Vertexes

- We only consider vertexes after the common vertex.
- Vertexes prior to the "common ancestor" only change its kinematics (E and Q available for the decay)
- We disregard late vertexes of partons outside of the cone.
- We neglect non perturbative effects (color flows) in the final distribution.

Identifying Relevant Vertexes

 Boosting to the frame where each parton is transverse: the probability of splitting after a transverse length L

$$\mathcal{P}_R^{out}(L) = \left\langle \frac{n_R^{out}(L)}{n_R} \right\rangle$$

- We evaluate this observable in PYTHIA for di-jet events (parton level, no underlying event)
- Vacuum fragmentation develops over a very long time!

Comparing to Nuclear scale

- How does the vacuum pattern compare to the inmedium length evolution?
- If there would be no large modifications of the evolution time: what would be the probability of splitting outside?

In-Medium Path Length

- Woods-Saxon profile with I/T longitudinal expansion
- From each point, the density weight length:

$$L = 2 \frac{\int_0^\infty d\tau \tau \rho(\mathbf{x} + \hat{n}\tau, \tau)}{\int_0^\infty d\tau \rho(\mathbf{x} + \hat{n}\tau, \tau)}$$

 Simple absorption model to discriminate leading and associated jets: Probability of jet absorption:

$$A(L) = e^{-L^2/L_c^2}$$
 L_c=3.3 fm fixed from R_{AA}=0.5

Out-of-Medium Emissions

 A large fraction of fragments are emitted outside of the medium both for leading and associated jet

Out-of-Medium Emissions

 Mild dependence on the energy of the fragment (at least for those within the jet cone)

Conclusions

• If in-medium jet evolution proceeds like in vacuum:

More than 80% of leading jet fragments occur outside 70% of associated

Unless a conspiracy of effects occurs, unmodified FF imply

In-medium evolution cannot alter Q² evolution significantly

Additional in-medium radiation must be:

-Emitted at large angles (outside of the cone)

and/or

-Dominated by soft fragments