

Characterizing energy loss with ALICE

Peter Jacobs, LBNL/CERN for the ALICE Collaboration

ALICE

Outline

Goal: bring together a wide array of ALICE results to obtain a global view of what we know about partonic energy loss

- compare and contrast data
- compare to theory

Observables:

- Inclusive charged hadrons
- Identified light hadrons
- Heavy flavor
- Hadron correlations
- Jets in p+p
- Jets in Pb+Pb

	Observables	Score
Radiative++ E-loss		
In-medium high p _T fragmentation		
Color charge dependence		
Induced large-angle radiation		
Jet/bulk medium Coalescence		
Dead cone effect		
AdS/CFT		

Н

	Observables	Score
Radiative++ E-loss		
We take this approach in the spirit of a workshop discussion Any such scorecard is by its nature a simplification But it can focus discussion about what is really established, what is not, and what is needed to resolve key issues		
Jet/bulk medium Coalescence		
Dead cone effect		
AdS/CFT		

The reference:

inclusive charged hadron spectrum

Talk: M. Floris

Charged particle tracking under good control

Charged hadron R_{AA}: Comparison to theory

Talk: M. Floris

R_{AA} alone is not highly discriminating

Charged hadron R_{AA} and I_{AA}

See talk by T. Renk

Multiple observables provide significant discrimination

	Observables	Score
Radiative++ E-loss	Charged hadron R _{AA} +I _{AA}	Compatible
In-medium high p _T fragmentation		
Color charge dependence		
Induced large-angle radiation		
Jet/bulk medium Coalescence		
Dead cone effect		
AdS/CFT		

H

High p_T fragmentation

Charged pion inclusive spectrum

Talk: P. Christiansen

high p_T ratios in central Pb+Pb similar to vacuum fragmentation

R_{AA} : Separate π , p+K vs. all charged

Talk: P. Christiansen

R_{AA}: Separate p, p+K vs. all charged

Talk: P. Christiansen

R_{AA} : Λ , K^{0} , π^{0} , all charged

Talk: P. Christiansen

Similar picture: energy loss followed by fragmentation in vacuum?

Leading hadron bias → measure within reconstructed jets

	Observables	Score
Radiative++ E-loss	Charged hadron R _{AA} +I _{AA}	Compatible
In-medium high p _T fragmentation	Identified particle ratios, R _{AA}	No evidence
Color charge dependence		
Induced large-angle radiation		
Jet/bulk medium Coalescence		
Dead cone effect		
AdS/CFT		

Н

Intermediate p_T. Jet-medium coalescence?

Λ/K^0 ratio, Λ R_{AA}; Comparison with RHIC

LHC vs RHIC: quantitatively different but qualitatively similar

Enhancement has similar p_T range and magnitude despite large increase in relative jet rate at LHC vs RHIC

→ No evidence that jet production plays a dominant role

Near-side di-hadron correlations:

 p/π ratio

Talks: M. Veldhoen, J F Grosse-Oetringhaus

p/π in jet peak consistent with PYTHIA

- No evidence of medium-induced modification of fragmentation
- Caution: physics evolves rapidly with p_T in this region

	Observables	Score
Radiative++ E-loss	Charged hadron R _{AA} +I _{AA}	Compatible
In-medium high p _T fragmentation	Identified particle ratios, R _{AA}	No evidence
Color charge dependence		
Induced large-angle radiation		
Jet/bulk medium Coalescence	p/π ratio in jet-like peak; weak evolution of baryon/meson ratio vs RHIC	No evidence
Dead cone effect		
AdS/CFT		

Н

Charged hadron correlations

Talks: A. Morsch, J F Grosse-Oetringhaus

b) η-gap subtracted

- Greater longitudinal than azimuthal broadening
- Suggestive of "medium drag" of radiation
- Caution: physics evolves rapidly with p_T in this region

	Observables	Score
Radiative++ E-loss	Charged hadron R _{AA} +I _{AA}	Compatible
In-medium high p _T fragmentation	Identified particle ratios, R _{AA}	No evidence
Color charge dependence		
Induced large-angle radiation	Di-hadron correlations: longitudinal but not azimuthal broadening	Maybe
Jet/bulk medium Coalescence	p/π ratio in jet-like peak; weak evolution of baryon/meson ratio vs RHIC	No evidence
Dead cone effect		
AdS/CFT		

Н

Charm

Plenary talk: S. Masciocchi

Parallel talks: Z. Conesa de Valle, M. Kweon, G. Ortona, D. Stocco

D meson R_{AA}

 R_{AA}

R_{AA} Ratio D/π

Hint of larger R_{AA} for D than π

- Color-charge effect?
- No evidence for dead cone effect (p_T dependence)
- Higher precision in progress

Heavy flavor R_{AA}: simultaneous modeling of forward HF muons and central D-mesons

Variants of radiative++ energy loss agree with data

D meson v₂

Highly anticipated measurement...

D-mesons flow like charged hadrons

D-meson R_{AA} and v₂: compare to models

Charm is conserved: significant constraints on models Higher precision in progress → yet stronger constraints

	Observables	Score
Radiative++ E-loss	Charged hadron R _{AA} +I _{AA} ; Charm R _{AA} +v ₂	Compatible
In-medium high p _T fragmentation	Identified particle ratios, R _{AA}	No evidence
Color charge dependence	R_{AA} ratio D/π	Maybe
Induced large-angle radiation	Di-hadron correlations: longitudinal but not azimuthal broadening	Maybe
Jet/bulk medium Coalescence	p/π ratio in jet-like peak; weak evolution of baryon/meson ratio vs RHIC	No evidence
Dead cone effect	R_{AA} ratio D/π	No evidence
AdS/CFT		

Н

AdS/CFT vs charm and charged hadron R_{AA}

Consistent with NPE data at RHIC Describes LHC charged and displaced J/ ψ R_{AA} (CMS) Does not describe open charm R_{AA}

	Observables	Score
Radiative++ E-loss	Charged hadron R _{AA} +I _{AA} ; Charm R _{AA} +v ₂	Compatible
In-medium high p _T fragmentation	Identified particle ratios, R _{AA}	No evidence
Color charge dependence	R_{AA} ratio D/π	Maybe
Induced large-angle radiation	Di-hadron correlations: longitudinal but not azimuthal broadening	Maybe
Jet/bulk medium Coalescence	p/π ratio in jet-like peak; weak evolution of baryon/meson ratio vs RHIC	No evidence
Dead cone effect	R_{AA} ratio D/π	No evidence for large effect
AdS/CFT	R_{AA} ratio D/π	Unlikely?

Н

Centrality dependence of R_{AA} : Compare D meson with prompt J/ψ (CMS)

Coincidence?

Jets

ALICE jet measurements

- EMCal: Pb-scintillator sampling calorimeter which covers:
 |η|<0.7, 80°<φ<180°
- 11520 towers with each covers $\Delta \eta x \Delta \phi \sim 0.014 x 0.014$

Tracking: $|\eta| < 0.9, 0 < \phi < 360^{\circ}$

TPC: gas detector

ITS: silicon detector

Charged constituents

Neutral constituents

ALICE jet measurement strategy

Measure almost all jet constituents explicitly

- Efficient charged particle tracking over wide p_T range
- Highly granular EM calorimetry

pp collisions: well controlled systematics

- Jet Energy Scale uncertainty $\sim 4\%$ at $p_T=100$ GeV/c
 - →~20% cross section uncertainty

pp at $\sqrt{s} = 2.76$ TeV: inclusive jet cross section

Talk: R. Ma

Agreement within uncertainties with NLO pQCD, PYTHIA8

pp at $\sqrt{s} = 2.76 \text{ TeV}$:

ratio of jet cross-sections R=0.2/R=0.4

Talk: R. Ma

Probe of jet structure

Soyez '12: direct calculation of ratio is effectively NNLO Reasonable agreement with NLO+hadronization

Charged Particle Jets in Pb+Pb

Talk: M. Verweij

Charged jet R_{AA} (vs PYTHIA)

Talk: M. Verweij

Charged jet R_{AA} : compare to Jewel MC

Talk: M. Verweij

JEWELtuned on hadron R_{AA} → reproduces jet R_{AA}

	Observables	Score
Radiative++ E-loss	Charged hadron $R_{AA}+I_{AA}$; Charm $R_{AA}+v_2$; charged jet R_{AA}	Compatible
In-medium high p _T fragmentation	Identified particle ratios, R _{AA}	No evidence
Color charge dependence	R_{AA} ratio D/π	Maybe
Induced large-angle radiation	Di-hadron correlations: longitudinal but not azimuthal broadening	Maybe
Jet/bulk medium Coalescence	p/π ratio in jet-like peak; weak evolution of baryon/meson ratio vs RHIC	No evidence
Dead cone effect	R_{AA} ratio D/π	No evidence for large effect
AdS/CFT	R_{AA} ratio D/π	Unlikely?

Н

Summary and Outlook

ALICE measures a wide array of observables to probe the mechanisms underlying partonic energy loss

- Unique capabilities for particle identification and low p_T charm measurements
- We can begin to exclude models or concepts based on current results

Consistent picture thus far: radiative+elastic energy loss followed by fragmentation in vacuum

More discriminating measurements to come, especially:

- Correlations
- Charm
- Jets