Characterizing energy loss with ALICE ## Peter Jacobs, LBNL/CERN for the ALICE Collaboration ## ALICE #### Outline Goal: bring together a wide array of ALICE results to obtain a global view of what we know about partonic energy loss - compare and contrast data - compare to theory #### Observables: - Inclusive charged hadrons - Identified light hadrons - Heavy flavor - Hadron correlations - Jets in p+p - Jets in Pb+Pb | | Observables | Score | |---|-------------|-------| | Radiative++ E-loss | | | | In-medium high p _T fragmentation | | | | Color charge dependence | | | | Induced large-angle radiation | | | | Jet/bulk medium
Coalescence | | | | Dead cone effect | | | | AdS/CFT | | | Н | | Observables | Score | |---|-------------|-------| | Radiative++ E-loss | | | | We take this approach in the spirit of a workshop discussion Any such scorecard is by its nature a simplification But it can focus discussion about what is really established, what is not, and what is needed to resolve key issues | | | | Jet/bulk medium
Coalescence | | | | Dead cone effect | | | | AdS/CFT | | | #### The reference: ## inclusive charged hadron spectrum Talk: M. Floris Charged particle tracking under good control ## Charged hadron R_{AA}: Comparison to theory Talk: M. Floris R_{AA} alone is not highly discriminating ## Charged hadron R_{AA} and I_{AA} See talk by T. Renk Multiple observables provide significant discrimination | | Observables | Score | |---|---|------------| | Radiative++ E-loss | Charged hadron R _{AA} +I _{AA} | Compatible | | In-medium high p _T fragmentation | | | | Color charge dependence | | | | Induced large-angle radiation | | | | Jet/bulk medium
Coalescence | | | | Dead cone effect | | | | AdS/CFT | | | H ## High p_T fragmentation ### Charged pion inclusive spectrum Talk: P. Christiansen high p_T ratios in central Pb+Pb similar to vacuum fragmentation ## R_{AA} : Separate π , p+K vs. all charged Talk: P. Christiansen ## R_{AA}: Separate p, p+K vs. all charged Talk: P. Christiansen ## R_{AA} : Λ , K^{0} , π^{0} , all charged Talk: P. Christiansen Similar picture: energy loss followed by fragmentation in vacuum? Leading hadron bias → measure within reconstructed jets | | Observables | Score | |---|---|-------------| | Radiative++ E-loss | Charged hadron R _{AA} +I _{AA} | Compatible | | In-medium high p _T fragmentation | Identified particle ratios, R _{AA} | No evidence | | Color charge dependence | | | | Induced large-angle radiation | | | | Jet/bulk medium
Coalescence | | | | Dead cone effect | | | | AdS/CFT | | | Н ## Intermediate p_T. Jet-medium coalescence? ## Λ/K^0 ratio, Λ R_{AA}; Comparison with RHIC LHC vs RHIC: quantitatively different but qualitatively similar Enhancement has similar p_T range and magnitude despite large increase in relative jet rate at LHC vs RHIC → No evidence that jet production plays a dominant role #### Near-side di-hadron correlations: p/π ratio Talks: M. Veldhoen, J F Grosse-Oetringhaus #### p/π in jet peak consistent with PYTHIA - No evidence of medium-induced modification of fragmentation - Caution: physics evolves rapidly with p_T in this region | | Observables | Score | |---|--|-------------| | Radiative++ E-loss | Charged hadron R _{AA} +I _{AA} | Compatible | | In-medium high p _T fragmentation | Identified particle ratios, R _{AA} | No evidence | | Color charge dependence | | | | Induced large-angle radiation | | | | Jet/bulk medium
Coalescence | p/π ratio in jet-like peak; weak evolution of baryon/meson ratio vs RHIC | No evidence | | Dead cone effect | | | | AdS/CFT | | | Н ## Charged hadron correlations Talks: A. Morsch, J F Grosse-Oetringhaus b) η-gap subtracted - Greater longitudinal than azimuthal broadening - Suggestive of "medium drag" of radiation - Caution: physics evolves rapidly with p_T in this region | | Observables | Score | |---|--|-------------| | Radiative++ E-loss | Charged hadron R _{AA} +I _{AA} | Compatible | | In-medium high p _T fragmentation | Identified particle ratios, R _{AA} | No evidence | | Color charge dependence | | | | Induced large-angle radiation | Di-hadron correlations: longitudinal but not azimuthal broadening | Maybe | | Jet/bulk medium
Coalescence | p/π ratio in jet-like peak; weak evolution of baryon/meson ratio vs RHIC | No evidence | | Dead cone effect | | | | AdS/CFT | | | Н #### Charm Plenary talk: S. Masciocchi Parallel talks: Z. Conesa de Valle, M. Kweon, G. Ortona, D. Stocco ## D meson R_{AA} R_{AA} #### R_{AA} Ratio D/π #### Hint of larger R_{AA} for D than π - Color-charge effect? - No evidence for dead cone effect (p_T dependence) - Higher precision in progress # Heavy flavor R_{AA}: simultaneous modeling of forward HF muons and central D-mesons Variants of radiative++ energy loss agree with data ## D meson v₂ Highly anticipated measurement... D-mesons flow like charged hadrons ## D-meson R_{AA} and v₂: compare to models Charm is conserved: significant constraints on models Higher precision in progress → yet stronger constraints | | Observables | Score | |---|---|-------------| | Radiative++ E-loss | Charged hadron R _{AA} +I _{AA} ; Charm R _{AA} +v ₂ | Compatible | | In-medium high p _T fragmentation | Identified particle ratios, R _{AA} | No evidence | | Color charge dependence | R_{AA} ratio D/π | Maybe | | Induced large-angle radiation | Di-hadron correlations: longitudinal but not azimuthal broadening | Maybe | | Jet/bulk medium
Coalescence | p/π ratio in jet-like peak; weak evolution of baryon/meson ratio vs RHIC | No evidence | | Dead cone effect | R_{AA} ratio D/π | No evidence | | AdS/CFT | | | Н ## AdS/CFT vs charm and charged hadron R_{AA} Consistent with NPE data at RHIC Describes LHC charged and displaced J/ ψ R_{AA} (CMS) Does not describe open charm R_{AA} | | Observables | Score | |---|---|------------------------------| | Radiative++ E-loss | Charged hadron R _{AA} +I _{AA} ; Charm R _{AA} +v ₂ | Compatible | | In-medium high p _T fragmentation | Identified particle ratios, R _{AA} | No evidence | | Color charge dependence | R_{AA} ratio D/π | Maybe | | Induced large-angle radiation | Di-hadron correlations: longitudinal but not azimuthal broadening | Maybe | | Jet/bulk medium
Coalescence | p/π ratio in jet-like peak; weak evolution of baryon/meson ratio vs RHIC | No evidence | | Dead cone effect | R_{AA} ratio D/π | No evidence for large effect | | AdS/CFT | R_{AA} ratio D/π | Unlikely? | Н ## Centrality dependence of R_{AA} : Compare D meson with prompt J/ψ (CMS) Coincidence? ## Jets #### ALICE jet measurements - EMCal: Pb-scintillator sampling calorimeter which covers: |η|<0.7, 80°<φ<180° - 11520 towers with each covers $\Delta \eta x \Delta \phi \sim 0.014 x 0.014$ Tracking: $|\eta| < 0.9, 0 < \phi < 360^{\circ}$ TPC: gas detector ITS: silicon detector Charged constituents Neutral constituents ## ALICE jet measurement strategy Measure almost all jet constituents explicitly - Efficient charged particle tracking over wide p_T range - Highly granular EM calorimetry pp collisions: well controlled systematics - Jet Energy Scale uncertainty $\sim 4\%$ at $p_T=100$ GeV/c - →~20% cross section uncertainty ### pp at $\sqrt{s} = 2.76$ TeV: inclusive jet cross section Talk: R. Ma #### Agreement within uncertainties with NLO pQCD, PYTHIA8 ## pp at $\sqrt{s} = 2.76 \text{ TeV}$: #### ratio of jet cross-sections R=0.2/R=0.4 Talk: R. Ma #### Probe of jet structure Soyez '12: direct calculation of ratio is effectively NNLO Reasonable agreement with NLO+hadronization ### Charged Particle Jets in Pb+Pb Talk: M. Verweij ### Charged jet R_{AA} (vs PYTHIA) Talk: M. Verweij ### Charged jet R_{AA} : compare to Jewel MC Talk: M. Verweij ## JEWELtuned on hadron R_{AA} → reproduces jet R_{AA} | | Observables | Score | |---|--|------------------------------| | Radiative++ E-loss | Charged hadron $R_{AA}+I_{AA}$; Charm $R_{AA}+v_2$; charged jet R_{AA} | Compatible | | In-medium high p _T fragmentation | Identified particle ratios, R _{AA} | No evidence | | Color charge dependence | R_{AA} ratio D/π | Maybe | | Induced large-angle radiation | Di-hadron correlations: longitudinal but not azimuthal broadening | Maybe | | Jet/bulk medium
Coalescence | p/π ratio in jet-like peak; weak evolution of baryon/meson ratio vs RHIC | No evidence | | Dead cone effect | R_{AA} ratio D/π | No evidence for large effect | | AdS/CFT | R_{AA} ratio D/π | Unlikely? | Н ## Summary and Outlook ALICE measures a wide array of observables to probe the mechanisms underlying partonic energy loss - Unique capabilities for particle identification and low p_T charm measurements - We can begin to exclude models or concepts based on current results Consistent picture thus far: radiative+elastic energy loss followed by fragmentation in vacuum More discriminating measurements to come, especially: - Correlations - Charm - Jets