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Motivation (I)

ATLAS

● In central Pb-Pb collisions at the LHC 
(√s

NN
=2.76 TeV) evidence for strong 

medium induced partonic energy loss 
found  in several observables:
✔ Inclusive hadron R

AA
(p

T
)

✔ Away-side conditional yield I
AA

✔ Jet R
AA

(E
T
)

✔ jet-jet and γ-jet energy imbalance
✔ …

● Analysis of high-E
T
 jets (ATLAS, CMS) 

shows
✔  Remnant jet looks like unquenched jet 

(unmodified fragmentation)
✔ Radiated energy: low-p

T
 particles at large 

distance to jet axis.
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Motivation (II)

∆ϕ rms

PRL 93,242301 (2004)

dNch/dη

∆η  rms

data points: 
STAR preliminary

• N. Armesto, C. Salgado, U. Wiedemann: 
Measuring the Collective Flow with Jets
 [PRL 93,242301 (2004)]

– Broadening in a static medium
– Longitudinal flow results in deformation of the 

conical jet shape
 Different ∆ϕ and ∆η widths (eccentric jets)

● Interest to study modifications of the jet shape
● Increase of width (radiation) 
● Increase of eccentricity (longitudinal flow)

● In particular at low parton p
T
 

where quenching effects are strongest.
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Di-Hadron Correlations

● Study jet properties in heavy ion collisions in a transverse momentum range where 
event-by-event jet reconstruction over the fluctuations of the underlying event is not 
possible.

● Analyze angular correlations in azimuth  ∆ϕ and pseudo-rapidity ∆η differences 
between a trigger particle (trig) and all associated (assoc) particles satisfying 
specific cuts on p

T,trig
 and p

T,assoc 
are studied and quantified by the per trigger per trigger 

associated particle yieldassociated particle yield: 

ηϕ ∆∆ dd

Nd

N
assoc

trig

21

p
T,trig

 

p
T,assoc

 

Nears-side peak (∆ϕ=∆η =0) and away-side ridge (∆ϕ=π)
are reminiscent of LO back-to-back parton production 
(jets).

At low p
T
 correlations at large ∆η and away-side 

dominated by collective effects (v
2
, v

3
, ...) ∆ϕ

∆η
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Subtraction of ∆η−independent Correlations

Signal

- Nearside peak centered at (∆ϕ= 0, ∆η = 0)

- ∆η independent (long range) correlations 
(mainly flow near-side + flow+jet away-side)
plus uncorrelated background.

- Signal Extraction: Subtract side bands 1 < ∆η < 1.6
- Study near-side peak (away side peak is removed
  by this procedure) 

∆ϕ
∆η

∆ϕ

∆ϕ
∆η
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Event and Track Selection
● Data Sets

– Pb-Pb at √s
NN

=2.76 TeV 

● 15 M events  from 2010 data taking period in 0-90% centrality class
– pp reference at √s = 2.76 TeV

● 55 M events from 2011 low energy run
● Centrality selection

– Using VZERO (N
ch

 with scintillators in 2.8 < η < 5.1 and -3.7< η < -1.7)

● Tracking 
– TPC tracks constrained to the primary vertex

● optimal azimuth (ϕ) acceptance = uniformity for angular correlations
● Minimize two-track cluster merging effects in the TPC

–Cut in closest approach inside the TPC
● |η| < 0.9
●

● Two step correction procedure

– 2-track acceptance correction using mixed events       ⇒ Corrected shape

– Single particle efficiency and contamination correction ⇒ Corrected per trigger particle yields 
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Two-Track Acceptance Correction
● Event Mixing performed in bins of

● Long. vertex position (z, ∆z = 2 cm)

● Centrality: 1% steps from 0-5%; then 5-
10% followed by 10% steps.

● For each z-bin calculate the ratio:

– β chosen such that correction 
interpolated to ∆ϕ=∆η=0 is 1.

● Calculate weighted average of ratios

d2 N raw

d Δϕ d Δ η
(Δ ϕ ,Δη , z )=

1
N trig (z)

N pair
same(Δ ϕ ,Δη , z )

N pair
mixed

(Δϕ ,Δ η , z)
β

d2 N raw

d Δϕd Δ η
(Δ ϕ ,Δη)=

1

∑z
N trig(z )

∑z
N trig(z )

d2 N raw

d Δ ϕd Δη
(Δϕ ,Δ η , z)

Mixed event 

Same event

∆ϕ
∆η

∆ϕ
∆η
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Single Particle Corrections

Tracking Efficiency Contamination
(secondaries)

N pair
corrected

(Δη ,Δ ϕ , pT , trig , pT , assoc ,C)=N pair
raw

(Δ η ,Δϕ , pT ,trig , pT ,assoc ,C )⋅C trckeff ( pT , assoc ,C)⋅Ctrckeff ( pT ,trig ,C)

C cont ( pT ,assoc )⋅C cont( pT , trig)C correlatedcont (pT , assoc , pT ,trig ,Δ η ,Δ ϕ)

N trig
corrected

( pT ,trig ,C)=N trig
raw

( pT ,trig ,C)⋅Ctrckeff ( pT ,trig)⋅C cont( pT ,trig)
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Results
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Shape Evolution       
(side-band subtracted, fully corrected yields)                  

pT

• Wider peak in central collisions
• Peripheral and pp similar
• Strong pT dependence

Aim: Characterize the peak

2 < p
T,trig    

< 3 GeV
1< p

T,assoc
< 2 GeV

4 < p
T,trig    

< 8 GeV
2 < p

T,assoc
< 3 GeV

0-10% 60-70% pp

∆ϕ
∆η

∆ϕ
∆η

∆ϕ
∆η

∆ϕ
∆η

∆ϕ
∆η

∆ϕ
∆η
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Characterization of the near-side peak

• Quantify peak shape using rms (σ∆ϕ, σ∆η) and Excess Kurtosis (K∆φ, K∆η)= µ4 / µ2
2 -3 (µn nth 

moment) “peakedness” (Laplace: K=3, Gaussian: 0, semi-circle: -1, uniform -1.2)

• rms from projections or fits

• Near-side peak fitted with 2 x 2D Gaussians 

Data Fit Residuals

F1(Δϕ ,Δ η)=N [αGauss (0,0,σΔϕ
1 ,σΔ η

1 ;Δϕ , Δη)+(1−α)Gauss (0,0,σΔ ϕ
2 ,σΔ η

2 ;Δϕ ,Δ η)]

∆ϕ
∆η

∆ϕ
∆η

∆ϕ
∆η
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σ∆φ,σ∆η from Fit

• No centrality dependence of σφ 

– p
T,assoc

 dependence governed by  j
T
 ~ p

T,assoc
 σφ = const.

– Same for ση in peripheral collisions

• Significant increase of ση towards central events

– For the lowest p
T
 bin, eccentricity (ση−σφ) / (ση + σφ) increases 

from 0 to 0.2

• Smooth continuation from peripheral to pp

σ
∆

ϕ
 (

fi
t)

 [
ra

d
]

Centrality | 100 = ppCentrality | 100 = pp

σ
∆

η
 (

fi
t)

 [
ra

d
]2 < pT,t < 3    1 < pT,a < 2 GeV/c

    3 < pT,t < 4    1 < pT,a < 2 GeV/c
    3 < pT,t < 4    2 < pT,a < 3 GeV/c
    4 < pT,t < 8    1 < pT,a < 2 GeV/c
    4 < pT,t < 8    2 < pT,a < 3 GeV/c
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Excess Kurtosis

• Obtained from projections within |∆ϕ|, |∆η| < 0.8

• Clear pT dependence
– Kurtosis increases with p

T

• Centrality dependence 

– Kurtosis decreases going from pp to peripheral, to 
central events

Gauss

2 < pT,t < 3    1 < pT,a < 2 GeV/c
    3 < pT,t < 4    2 < pT,a < 3 GeV/c
    4 < pT,t < 8    2 < pT,a < 3 GeV/c

K
u

rt
o

si
s 

∆
ϕ

K
u

rt
o

si
s 

∆
η

Centrality | 100 = pp Centrality | 100 = pp
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Comparison with AMPT MC

● AMPT (A MultiPhase Transport Code)
– Initial conditions simulated using HIJING

– Parton scattering

– Hadronization: Lund model + coalescence

– Hadron scattering

● AMPT describes the main features of the 
near-side shape evolution observed in data

PHYSICAL REVIEW C 72, 064901 (2005)
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Centrality | 100 = ppCentrality | 100 = pp

Centrality | 100 = pp Centrality | 100 = pp

K
u

rt
o

si
s 

∆
η

K
u

rt
o

si
s 

∆
ϕ

σ
∆

ϕ
 (

fi
t)

 (
ra

d
.)

σ
∆

η
 (

fi
t)

 (
ra

d
.)2 < pT,t < 3    1 < pT,a < 2 GeV/c

    3 < pT,t < 4    2 < pT,a < 3 GeV/c
    4 < pT,t < 8    2 < pT,a < 3 GeV/c

Lines:
AMPT 2.25 (Pb-Pb)
Pythia6 (Perugia0) (pp)
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    A closer look to the lowest (p
T,trig

,p
T,assoc

) bin

2 < pT,trig   <  3 GeV
1 < pT,assoc < 2 GeV

Centrality 0-10%

AMPT
“Flattening” of the ∆η distribution 
seen in data and AMPT

AMPT 2.25

∆ϕ
∆η

∆ϕ, ∆η

∆ϕ, ∆η
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Conclusions

● ALICE has studies the centrality and p
T
 evolution of near-side 

peak shapes in Pb-Pb collisions at √s
NN
=2.76 TeV

● The shapes have been quantified by their rms and Kurtosis in 
the ∆φ and ∆η directions.

– We observe (within errors) no centrality dependence of σφ 

– Significant increase of ση towards central events

● Eccentricity reaches 0.2 for the lowest p
T
 bin studied

● Interaction of jets with longitudinal flow ?

– Kurtosis (“peakedness”) monotonically decreases with increasing 
centrality of the collisions.
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Not shown: ZDC (at ±114m)

L3 Magnet
T0
V0: Trigger,
Centrality

TPC
Tracking, 
PID (dE/dx) ITS

Low pT tracking
PID + Vertexing

MUON 
μ-pairs

TOF
PID

TRD
Electron ID (TR)

HMPID
PID (RICH) @ high pT

PHOS
γ, π0, jets

PMD
γ  multiplicity

ACORDE
Cosmic trigger

FMD
Charged 
multiplicity

Dipole

EMCAL
γ, π0, jets

ALICE
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Systematic Uncertainties
• Sources

– η range of flow subtraction
– Track selection
– Vertex range
– Influence of resonances and conversions
– Two-track effect
– Wing (increase at large ∆η) correction
– Two different fit procedures

• All sources have been evaluated 
– For the parameters: ση/σφ (fit), ση/σφ, Kη/Kφ

– For the correlation functions

treated with
on average

added directly

shown as 
2nd result
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Two-Track Efficiency

• z charge, e elementary charge, Bz magnetic 
field, r Radius in the TPC

• DCA of the track pair in the TPC corrected for 
magnetic field bending

• Minimum evaluated in the TPC volume (0.8 < r < 
2.5m)

• Cut on |∆ϕ*
min| < 0.02 && |∆η| < 0.02

– Values doubled for systematic uncertainty

• Applied consistently to same and mixed event
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Two-Track Efficiency (2)

No cut

Cut
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