

Jet-like Near-side Peak Shapes in Pb-Pb Collisions at $\sqrt{s_{_{NN}}}$ =2.76 TeV with ALICE

Andreas Morsch CERN

on behalf of the ALICE Collaboration

Hard Probes 2012

5th international Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions 27 May – 1 June 2012, Cagliari (Sardinia, Italy)

Outline

- Motivation
- Analysis Details
- Results and Comparison to Monte Carlo Simulations
- Conclusions

Motivation (I)

- In central Pb-Pb collisions at the LHC $(\sqrt{s_{NN}}=2.76 \text{ TeV})$ evidence for strong medium induced partonic energy loss found in several observables:
 - Inclusive hadron $R_{AA}(p_T)$
 - Away-side conditional yield I_{AA}
 - \sim Jet $R_{AA}(E_{T})$
 - $\, {}^{\, \prime}\,$ jet-jet and γ -jet energy imbalance
 - · ...
- Analysis of high-E_T jets (ATLAS, CMS) shows
 - Remnant jet looks like unquenched jet
 - (unmodified fragmentation)
 - Radiated energy: low- p_{T} particles at large distance to jet axis.

Motivation (II)

Flowing medium: Anisotropic shape

• N. Armesto, C. Salgado, U. Wiedemann: *Measuring the Collective Flow with Jets*

[PRL 93,242301 (2004)]

- Broadening in a static medium
- Longitudinal flow results in deformation of the conical jet shape
 - → Different $\Delta \phi$ and $\Delta \eta$ widths (eccentric jets)

- Interest to study modifications of the jet shape
 - Increase of width (radiation)
 - Increase of eccentricity (longitudinal flow)
- In particular at low parton $p_{\rm T}$ where quenching effects are strongest.

PRL 93,242301 (2004)

Di-Hadron Correlations

- Study jet properties in heavy ion collisions in a transverse momentum range where event-by-event jet reconstruction over the fluctuations of the underlying event is not possible.
- Analyze angular correlations in azimuth $\Delta \varphi$ and pseudo-rapidity $\Delta \eta$ differences between a trigger particle (trig) and all associated (assoc) particles satisfying specific cuts on $p_{T,Trig}$ and $p_{T,Tassoc}$ are studied and quantified by the **per trigger**

Subtraction of $\Delta\eta-independent$ Correlations

a) Correlation

ALICE

- Nearside peak centered at ($\Delta \phi = 0, \Delta \eta = 0$)

- $\Delta\eta$ independent (long range) correlations (mainly flow near-side + flow+jet away-side) plus uncorrelated background.

- Signal Extraction: Subtract side bands 1 < $\Delta\eta$ < 1.6
- Study near-side peak (away side peak is removed by this procedure)

b) η-gap subtracted

Event and Track Selection

- Data Sets
 - Pb-Pb at $\sqrt{s_{_{NN}}}$ =2.76 TeV
 - 15 M events from 2010 data taking period in 0-90% centrality class
 - pp reference at \sqrt{s} = 2.76 TeV
 - 55 M events from 2011 low energy run
- Centrality selection
 - Using VZERO (N_{ch} with scintillators in 2.8 < η < 5.1 and -3.7< η < -1.7)
- Tracking
 - TPC tracks constrained to the primary vertex
 - optimal azimuth (φ) acceptance = uniformity for angular correlations
 - Minimize two-track cluster merging effects in the TPC
 - -Cut in closest approach inside the TPC
 - |*η*| < 0.9
 - •
- Two step correction procedure
 - 2-track acceptance correction using mixed events \Rightarrow Corrected shape
 - Single particle efficiency and contamination correction \Rightarrow Corrected per trigger particle yields

ALICE TWO-Track Acceptance Correction

- Event Mixing performed in bins of
 - Long. vertex position (z, $\Delta z = 2$ cm)
 - Centrality: 1% steps from 0-5%; then 5-10% followed by 10% steps.
 - For each *z*-bin calculate the ratio:

$$\frac{d^2 N^{raw}}{d \Delta \varphi d \Delta \eta} (\Delta \varphi, \Delta \eta, z) = \frac{1}{N_{trig}(z)} \frac{N_{pair}^{same}(\Delta \varphi, \Delta \eta, z)}{N_{pair}^{mixed}(\Delta \varphi, \Delta \eta, z)} \beta$$

- β chosen such that correction interpolated to $\Delta \phi = \Delta \eta = 0$ is 1.
- Calculate weighted average of ratios

8

$$\frac{d^2 N^{raw}}{d \Delta \varphi d \Delta \eta} (\Delta \varphi, \Delta \eta) = \frac{1}{\sum_z N_{trig}(z)} \sum_z N_{trig}(z) \frac{d^2 N^{raw}}{d \Delta \varphi d \Delta \eta} (\Delta \varphi, \Delta \eta, z)$$

Single Particle Corrections

$$N_{pair}^{corrected}(\Delta\eta, \Delta\varphi, p_{T, trig}, p_{T, assoc}, C) = N_{pair}^{raw}(\Delta\eta, \Delta\varphi, p_{T, trig}, p_{T, assoc}, C) \cdot C_{trckeff}(p_{T, assoc}, C) \cdot C_{trckeff}(p_{T, trig}, C) \\ C_{cont}(p_{T, assoc}) \cdot C_{cont}(p_{T, trig}) C_{correlated cont}(p_{T, assoc}, p_{T, trig}, \Delta\eta, \Delta\varphi) \\ N_{trig}^{corrected}(p_{T, trig}, C) = N_{trig}^{raw}(p_{T, trig}, C) \cdot C_{trckeff}(p_{T, trig}) \cdot C_{cont}(p_{T, trig})$$

Results

10

Andreas Morsch, Hard Probes 2012, Cagliari, May 28, 2012

11

ALICE Characterization of the near-side peak

- Quantify peak shape using *rms* ($\sigma_{\Delta q}$, $\sigma_{\Delta \eta}$) and Excess Kurtosis ($K_{\Delta q}$, $K_{\Delta \eta}$) = μ_4 / μ_2^2 -3 ($\mu_n n^{th}$ moment) "peakedness" (Laplace: *K*=3, Gaussian: 0, semi-circle: -1, uniform -1.2)
- rms from projections or fits
- Near-side peak fitted with 2 x 2D Gaussians

 $F_1(\Delta \varphi, \Delta \eta) = N[\alpha Gauss(0, 0, \sigma^1_{\Delta \varphi}, \sigma^1_{\Delta \eta}; \Delta \varphi, \Delta \eta) + (1 - \alpha) Gauss(0, 0, \sigma^2_{\Delta \varphi}, \sigma^2_{\Delta \eta}; \Delta \varphi, \Delta \eta)]$

 $\sigma_{\Delta\phi}, \sigma_{\Delta\eta}$ from Fit

- No centrality dependence of $\sigma_{_{\phi}}$
 - $p_{T,assoc}$ dependence governed by $j_T \sim p_{T,assoc} \sigma_{\phi} = \text{const.}$
 - Same for σ_{η} in peripheral collisions
- Significant increase of σ_n towards central events
 - For the lowest p_{T} bin, eccentricity $(\sigma_{\eta} \sigma_{\phi}) / (\sigma_{\eta} + \sigma_{\phi})$ increases from 0 to 0.2
- Smooth continuation from peripheral to pp

Excess Kurtosis

- Obtained from projections within $|\Delta \phi|$, $|\Delta \eta| < 0.8$
- Clear p_{T} dependence
 - Kurtosis increases with $p_{_{\rm T}}$
- Centrality dependence
 - Kurtosis decreases going from pp to peripheral, to central events

Comparison with AMPT MC

- AMPT (A MultiPhase Transport Code)
 - Initial conditions simulated using HIJING
 - Parton scattering
 - Hadronization: Lund model + coalescence
 - Hadron scattering
- AMPT describes the main features of the near-side shape evolution observed in data

Andreas Morsch, Hard Probes 2012, Cagliari, May 28, 2012

Conclusions

- ALICE has studies the centrality and p_{T} evolution of near-side peak shapes in Pb-Pb collisions at $\sqrt{s_{NN}}$ =2.76 TeV
- The shapes have been quantified by their rms and Kurtosis in the $\Delta \phi$ and $\Delta \eta$ directions.
 - We observe (within errors) no centrality dependence of $\sigma_{_0}$
 - Significant increase of σ_n towards central events
 - Eccentricity reaches 0.2 for the lowest p_{T} bin studied
 - Interaction of jets with longitudinal flow ?
 - Kurtosis ("peakedness") monotonically decreases with increasing centrality of the collisions.

ALICE

Systematic Uncertainties

- Sources
 - η range of flow subtraction
 - Track selection
 - Vertex range
 - Influence of resonances and conversions
 - Two-track effect
 - Wing (increase at large $\Delta \eta$) correction
 - Two different fit procedures
- All sources have been evaluated
 - For the parameters: $\sigma_{\eta}/\sigma_{\phi}$ (fit), $\sigma_{\eta}/\sigma_{\phi}$, K_{η}/K_{ϕ}
 - For the correlation functions

- added directly
 - shown as
 2nd result

Two-Track Efficiency

$$\Delta \phi^* = \Delta \phi + \arcsin \frac{z_1 e B_z r}{2p_{\mathrm{T},1}} - \arcsin \frac{z_2 e B_z r}{2p_{\mathrm{T},2}}$$

- z charge, e elementary charge, Bz magnetic field, r Radius in the TPC
- DCA of the track pair in the TPC corrected for magnetic field bending
- Minimum evaluated in the TPC volume (0.8 < r < 2.5m)
- Cut on $|\Delta \phi^*_{min}| < 0.02 \&\& |\Delta \eta| < 0.02$

– Values doubled for systematic uncertainty

• Applied consistently to same and mixed event

Two-Track Efficiency (2)

